
1Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 13

In a language without exception handling:
 When an exception occurs, control goes to the
 operating system, where a message is displayed
 and the program is terminated

In a language with exception handling:
 Programs are allowed to trap some exceptions,
 thereby providing the possibility of fixing the
 problem and continuing

Many languages allow programs to trap input/
 output errors (including EOF)

Def: An exception is any unusual event, either
 erroneous or not, detectable by either
 hardware or software, that may require
 special processing

Def: The special processing that may be required
 after the detection of an exception is called
 exception handling

Def: The exception handling code unit is called
 an exception handler

2Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 13
Def: An exception is raised when its associated
 event occurs

A language that does not have exception handling
 capabilities can still define, detect, raise, and
 handle exceptions

 - Alternatives:
 1. Send an auxiliary parameter or use the return
 value to indicate the return status of a
 subprogram
 - e.g., C standard library functions

 2. Pass a label parameter to all subprograms
 (error return is to the passed label)
 - e.g., FORTRAN

 3. Pass an exception handling subprogram to all
 subprograms

Advantages of Built-in Exception Handling:

1. Error detection code is tedious to write and it
 clutters the program
2. Exception propagation allows a high level of
 reuse of exception handling code

3Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 13

Design Issues for Exception Handling:

1. How and where are exception handlers specified
 and what is their scope?

2. How is an exception occurrence bound to an
 exception handler?

3. Where does execution continue, if at all, after an
 exception handler completes its execution?

4. How are user-defined exceptions specified?

5. Should there be default exception handlers for
 programs that do not provide their own?

6. Can built-in exceptions be explicitly raised?

7. Are hardware-detectable errors treated as
 exceptions that can be handled?

8. Are there any built-in exceptions?

7. How can exceptions be disabled, if at all?

4Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 13

PL/I Exception Handling

 - Exception handler form :

 ON condition [SNAP]
 BEGIN;
 ...
 END;

 - condition is the name of the associated
 exception

 - SNAP causes the production of a dynamic trace
 to the point of the exception

 - Binding exceptions to handlers

 - It is dynamic--binding is to the most recently
 executed ON statement

 - Continuation

 - Some built-in exceptions return control to the
 statement where the exception was raised
 - Others cause program termination
 - User-defined exceptions can be designed to
 go to any place in the program that is labeled

5Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 13
 - Other design choices:

 - User-defined exceptions are defined with:
 CONDITION exception_name

 - Exceptions can be explicitly raised with:
 SIGNAL CONDITION (exception_name)

 - Built-in exceptions were designed into three
 categories:
 a. Those that are enabled by default but
 could be disabled by user code
 b. Those that are disabled by default but
 could be enabled by user code
 c. Those that are always enabled

---> SHOW program listing (p. 543)

 - Evaluation

 - The design is powerful and flexible, but has the
 following problems:
 a. Dynamic binding of exceptions to handlers
 makes programs difficult to write and to read
 b. The continuation rules are difficult to
 implement and they make programs hard
 to read

6Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 13
Ada Exception Handling

Def: The frame of an exception handler in Ada is
 either a subprogram body, a package body,
 a task, or a block

 - Because exception handlers are usually local to
 the code in which the exception can be raised,
 they do not have parameters

 - Handler form:

 exception

 when exception_name {| exception_name} =>

 statement_sequence
 ...
 when ...
 ...

 [when others =>

 statement_sequence]

 - Handlers are placed at the end of the block or
 unit in which they occur

7Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 13
 - Binding Exceptions to Handlers

 - If the block or unit in which an exception is raised
 does not have a handler for that exception, the
 exception is propagated elsewhere to be handled

 1. Procedures - propagate it to the caller

 2. Blocks - propagate it to the scope in which it
 occurs

 3. Package body - propagate it to the declaration
 part of the unit that declared the package
 (if it is a library unit (no static parent), the
 program is terminated)

 4. Task - no propagation; if it has no handler,
 execute it; in either case, mark it "completed"

 - Continuation

 - The block or unit that raises an exception but
 does not handle it is always terminated (also
 any block or unit to which it is propagated that
 does not handle it)

8Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 13
 - User-defined Exceptions:

 exception_name_list : exception;

 raise [exception_name]

 (the exception name is not required if it is in a
 handler--in this case, it propagates the same
 exception)

 - Exception conditions can be disabled with:

 pragma SUPPRESS(exception_list)

 - Predefined Exceptions:

 CONSTRAINT_ERROR - index constraints, range
 constraints, etc.

 NUMERIC_ERROR - numeric operation cannot
 return a correct value, etc.

9Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 13
 PROGRAM_ERROR - call to a subprogram whose
 body has not been elaborated

 STORAGE_ERROR - system runs out of heap

 TASKING_ERROR - an error associated with tasks

---> SHOW program (pp. 549-550)

 - Evaluation

 - The Ada design for exception handling
 embodies the state-of-the-art in language
 design in 1980
 - A significant advance over PL/I
- Ada was the only widely used language with
 exception handling until it was added to C++

C++ Exception Handling

 - Added to C++ in 1990

 - Design is based on that of CLU, Ada, and ML

10Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 13
 - Exception Handlers

 - Form:

 try {
 -- code that is expected to raise an exception
 }
 catch (formal parameter) {
 -- handler code
 }
 ...
 catch (formal parameter) {
 -- handler code
 }

 - catch is the name of all handlers--it is an
 overloaded name, so the formal parameter of
 each must be unique

 - The formal parameter need not have a variable
 - It can be simply a type name to distinguish the
 handler it is in from others

 - The formal parameter can be used to transfer
 information to the handler

 - The formal parameter can be an ellipsis, in
 which case it handles all exceptions not yet
 handled

11Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 13
 - Binding Exceptions to Handlers

 - Exceptions are all raised explicitly by the
 statement:

throw [expression];

 - The brackets are metasymbols

 - A throw without an operand can only appear in
 a handler; when it appears, it simply reraises
 the exception, which is then handled
 elsewhere

 - The type of the expression disambiguates the
 intended handler

 - Unhandled exceptions are propagated to the
 caller of the function in which it is raised

 - This propagation continues to the main
 function

 - If no handler is found, the program is
 terminated

12Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 13
 - Continuation

 - After a handler completes its execution, control
 flows to the first statement after the last handler
 in the sequence of handlers of which it is an
 element

 - Other Design Choices

 - All exceptions are user-defined

 - Exceptions are neither specified nor declared

 - Functions can list the exceptions they may raise
 - Without a specification, a function can raise
 any exception

---> SHOW program listing (pp. 553-554)

 - Evaluation

 - It is odd that exceptions are not named and that
 hardware- and system software-detectable
 exceptions cannot be handled

 - Binding exceptions to handlers through the type
 of the parameter certainly does not promote
 readability

13Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 13

Java Exception Handling

 - Based on that of C++, but more in line with OOP
 philosophy

 - All exceptions are objects of classes that are
 descendants of the Throwable class

 - The Java library includes two subclasses of
 Throwable :

 1. Error

 - Thrown by the Java interpreter for events
 such as heap underflow

 - Never handled by user programs

 2. Exception

 - User-defined exceptions are usually
 subclasses of this

 - Has two predefined subclasses, IOException
 and RuntimeException (e.g.,
 ArrayIndexOutOfBoundsException and
 NullPointerException

14Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 13

 - Java Exception Handlers

 - Like those of C++, except every catch requires a
 named parameter and all parameters must be
 descendants of Throwable

 - Syntax of try clause is exactly that of C++

 - Exceptions are thrown with throw , as in C++,
 but often the throw includes the new operator to
 create the object, as in:

 throw new MyException();

 - Binding an exception to a handler is simpler in
 Java than it is in C++

 - An exception is bound to the first handler with
 a parameter is the same class as the thrown
 object or an ancestor of it

 - An exception can be handled and rethrown by
 including a throw in the handler (a handler
 could also throw a different exception)

15Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 13

 - Continuation

 - If no handler is found in the try construct, the
 search is continued in the nearest enclosing try
 construct, etc.

 - If no handler is found in the method, the
 exception is propagated to the method’s caller

 - If no handler is found (all the way to main), the
 program is terminated

 - To insure that all exceptions are caught, a
 handler can be included in any try construct
 that catches all exceptions

 - Simply use an Exception class parameter

 - Of course, it must be the last in the try
 construct

 - Other Design Choices

 - The Java throws clause is quite different from
 the throw class of C++

16Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 13
 - Exceptions of class Error and RunTimeException
 and all of their descendants are called
 unchecked exceptions

 - All other exceptions are called checked
 exceptions

 - Checked exceptions that may be thrown by a
 method must be either:

 1. Listed in the throws clause, or

 2. Handled in the method

 - A method cannot declare more exceptions in its
 throws clause than the method it overrides

 - A method that calls a method that lists a
 particular checked exception in its throws clause
 has three alternatives for dealing with that
 exception:

 1. Catch and handle the exception

 2. Catch the exception and throw an exception
 that is listed in its own throws clause

 3. Declare it in its throws clause and do not
 handle it

17Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 13

---> SHOW Example program (pp. 558-559)

 - The finally Clause

 - Can appear at the end of a try construct

 - Form:

 finally {
 ...
 }

 - Purpose : To specify code that is to be
 executed, regardless of what happens in
 the try construct

 - A try construct with a finally clause can be
 used outside exception handling

 try {
 for (index = 0; index < 100; index++) {
 …
 if (…) {
 return;
 } //** end of if
 } //** end of try clause
 finally {
 …
 } //** end of try construct

18Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 13

 - Evaluation

 - The types of exceptions makes more sense
 than in the case of C++

 - The throws clause is better than that of C++
 (The throw clause in C++ says little to the
 programmer)

 - The finally clause is often useful

 - The Java interpreter throws a variety of
 exceptions that can be handled by user
 programs

