
1Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 12
Concurrency can occur at four levels:

 1. Machine instruction level
 2. High-level language statement level
 3. Unit level
 4. Program level

Because there are no language issues in
 instruction- and program-level concurrency,
 they are not addressed here

The Evolution of Multiprocessor Architectures

 1. Late 1950s - One general-purpose processor and
 one or more special-purpose processors for
 input and output operations

 2. Early 1960s - Multiple complete processors, used
 for program-level concurrency

 3. Mid-1960s - Multiple partial processors, used for
 instruction-level concurrency

 4. Single-Instruction Multiple-Data (SIMD) machines
 The same instruction goes to all processors,
 each with different data - e.g., vector processors

2Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 12
5. Multiple-Instruction Multiple-Data (MIMD)
 machines
 - Independent processors that can be
 synchronized (unit-level concurrency)

Def: A thread of control in a program is the
 sequence of program points reached as control
 flows through the program

Categories of Concurrency:

 1. Physical concurrency - Multiple independent
 processors
 (multiple threads of control)

 2. Logical concurrency - The appearance of
 physical concurrency is presented by time-
 sharing one processor
 (software can be designed as if there were
 multiple threads of control)

- Coroutines provide only quasiconcurrency

3Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 12
Reasons to Study Concurrency

1. It involves a new way of designing software that
 can be very useful--many real-world situations
 involve concurrency

2. Computers capable of physical concurrency are
 now widely used

Fundamentals (for stmt-level concurrency)

Def: A task is a program unit that can be in
 concurrent execution with other program units

 - Tasks differ from ordinary subprograms in
 that:

 1. A task may be implicitly started
 2. When a program unit starts the execution
 of a task, it is not necessarily suspended
 3. When a task’s execution is completed,
 control may not return to the caller

Def: A task is disjoint if it does not communicate
 with or affect the execution of any other task
 in the program in any way

4Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 12
Task communication is necessary for
 synchronization

 - Task communication can be through:

 1. Shared nonlocal variables
 2. Parameters
 3. Message passing

 - Kinds of synchronization:

 1. Cooperation

 - Task A must wait for task B to complete some
 specific activity before task A can continue
 its execution
 e.g., the producer-consumer problem

 2. Competition

 - When two or more tasks must use some
 resource that cannot be simultaneously used
 e.g., a shared counter

 - A problem because operations are not
 atomic

5Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 12
 - Competition is usually provided by mutually
 exclusive access (methods are discussed
 later

 - Providing synchronization requires a mechanism
 for delaying task execution

 - Task execution control is maintained by a
 program called the scheduler, which maps
 task execution onto available processors

 - Tasks can be in one of several different execution
 states:

 1. New - created but not yet started

 2. Runnable or ready - ready to run but not
 currently running (no available processor)

 3. Running

 4. Blocked - has been running, but cannot now
 continue (usually waiting for some event to
 occur)

 5. Dead - no longer active in any sense

6Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 12
 - Liveness is a characteristic that a program unit
 may or may not have

 - In sequential code, it means the unit will
 eventually complete its execution

 - In a concurrent environment, a task can easily
 lose its liveness

 - If all tasks in a concurrent environment lose their
 liveness, it is called deadlock

 - Design Issues for Concurrency:

 1. How is cooperation synchronization
 provided?

 2. How is competition synchronization provided?

 3. How and when do tasks begin and end
 execution?

 4. Are tasks statically or dynamically created?

7Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 12

Example: A buffer and some producers and some
 consumers

 Technique: Attach two SIGNAL objects to the
 buffer, one for full spots and one for empty spots

8Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 12
Methods of Providing Synchronization:

 1. Semaphores
 2. Monitors
 3. Message Passing

1. Semaphores (Dijkstra - 1965)

 - A semaphore is a data structure consisting of a
 counter and a queue for storing task descriptors

 - Semaphores can be used to implement guards on
 the code that accesses shared data structures

 - Semaphores have only two operations, wait and
 release (originally called P and V by Dijkstra)

 - Semaphores can be used to provide both
 competition and cooperation synchronization

9Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 12
- Cooperation Synchronization with Semaphores:

 - Example: A shared buffer

 - The buffer is implemented as an ADT with the
 operations DEPOSIT and FETCH as the only
 ways to access the buffer

 - Use two semaphores for cooperation:
 emptyspots and fullspots

 - The semaphore counters are used to store
 the numbers of empty spots and full spots
 in the buffer

 - DEPOSIT must first check emptyspots to see if
 there is room in the buffer

 - If there is room, the counter of emptyspots is
 decremented and the value is inserted

 - If there is no room, the caller is stored in the
 queue of emptyspots

 - When DEPOSIT is finished, it must increment
 the counter of fullspots

10Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 12

- FETCH must first check fullspots to see if
 there is a value

 - If there is a full spot, the counter of fullspots
 is decremented and the value is removed

 - If there are no values in the buffer, the caller
 must be placed in the queue of fullspots

 - When FETCH is finished, it increments the
 counter of emptyspots

 - The operations of FETCH and DEPOSIT on the
 semaphores are accomplished through two
 semaphore operations named wait and
 release

 wait(aSemaphore)
 if aSemaphore ’s counter > 0 then
 Decrement aSemaphore ’s counter
 else
 Put the caller in aSemaphore ’s queue
 Attempt to transfer control to some
 ready task
 (If the task ready queue is empty,
 deadlock occurs)
 end

11Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 12
 release(aSemaphore)
 if aSemaphore ’s queue is empty then
 Increment aSemaphore ’s counter
 else
 Put the calling task in the task ready
 queue
 Transfer control to a task from
 aSemaphore ’s queue
 end

---> SHOW Program (p. 500)

 - Competition Synchronization with Semaphores

 - A third semaphore, named access , is used to
 control access (competition synchronization)

 - The counter of access will only have the
 values 0 and 1
 - Such a semphore is called a binary
 semaphore

---> SHOW the complete shared buffer example
 program (p. 501-502)

 - Note that wait and release must be atomic!

12Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 12
Evaluation of Semaphores:

 1. Misuse of semaphores can cause failures in
 cooperation synchronization
 e.g., the buffer will overflow if the wait of
 fullspots is left out

 2. Misuse of semaphores can cause failures in
 competition synchronization
 e.g., The program will deadlock if the release of
 access is left out

2. Monitors (Concurrent Pascal, Modula, Mesa)

The idea: encapsulate the shared data and its
 operations to restrict access

A monitor is an abstract data type for shared data

---> SHOW the diagram of monitor buffer operation,
 Figure 11.2 (p. 505)

 - Example language: Concurrent Pascal

 - Concurrent Pascal is Pascal + classes,
 processes (tasks), monitors, and the queue
 data type (for semaphores)

13Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 12

- Example language: Concurrent Pascal (continued)

 - Processes are types

 - Instances are statically created by declarations

 - An instance is “started” by init , which allocates
 its local data and begins its execution

 - Monitors are also types
 Form:

 type some_name = monitor (formal parameters)
 shared variables
 local procedures
 exported procedures (have entry in definition)
 initialization code

 - Competition Synchronization with Monitors:

 - Access to the shared data in the monitor is
 limited by the implementation to a single
 process at a time; therefore, mutually exclusive
 access is inherent in the semantic definition of
 the monitor

 - Multiple calls are queued

14Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 12
- Cooperation Synchronization with Monitors:

 - Cooperation is still required - done with
 semaphores, using the queue data type and the
 built-in operations, delay (similar to send) and
 continue (similar to release)

 - delay takes a queue type parameter; it puts the
 process that calls it in the specified queue and
 removes its exclusive access rights to the
 monitor’s data structure
 - Differs from send because delay always
 blocks the caller

 - continue takes a queue type parameter; it
 disconnects the caller from the monitor, thus
 freeing the monitor for use by another process.
 It also takes a process from the parameter
 queue (if the queue isn’t empty) and starts it
 - Differs from release because it always has
 some effect (release does nothing if the
 queue is empty)

 ---> SHOW databuf monitor (p. 506), producer and
 consumer processes and the program that
 uses the buffer (p. 506-507)

15Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 12
Evaluation of monitors:

 - Support for competition synchronization is great!
 - Support for cooperation synchronization is
 very similar as with semaphores, so it has the
 same problems

3. Message Passing

 - Message passing is a general model for
 concurrency
 - It can model both semaphores and monitors
 - It is not just for competition synchronization

 - Central idea: task communication is like seeing a
 doctor--most of the time he waits for you or you
 wait for him, but when you are both ready, you
 get together, or rendezvous

 - In terms of tasks, we need:

 a. A mechanism to allow a task to indicate when it
 is willing to accept messages

 b. Tasks need a way to remember who is waiting to
 have its message accepted and some “fair” way
 of choosing the next message

16Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 12

Def: When a sender task’s message is accepted by
 a receiver task, the actual message
 transmission is called a rendezvous

 - The Ada 83 Message-Passing Model

 - Ada tasks have specification and body parts,
 like packages; the spec has the interface,
 which is the collection of entry points.

 e.g. task EX is
 entry ENTRY_1 (STUFF : in FLOAT);
 end EX;

 - The body task describes the action that takes
 place when a rendezvous occurs

 - A task that sends a message is suspended
 while waiting for the message to be accepted
 and during the rendezvous

 - Entry points in the spec are described with
 accept clauses (message sockets) in the
 body

17Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 12
 - Example of a task body:

 task body EX is
 begin
 loop
 accept ENTRY_1 (ITEM: in FLOAT) do
 ...
 end;
 end loop;
 end EX;

 - Semantics:

 a. The task executes to the top of the accept
 clause and waits for a message

 b. During execution of the accept clause, the
 sender is suspended

 c. accept parameters can transmit information
 in either or both directions

 d. Every accept clause has an associated
 queue to store waiting messages

---> SHOW rendezvous time lines for the example
 task (Figure 12.3, p. 511)

18Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 12
 - A task that has accept clauses, but no other code
 is called a server task (the example above is a
 server task)

 - A task without accept clauses is called an
 actor task

 - Example actor task:

 task WATER_MONITOR; -- specification
 task body WATER_MONITOR is -- body

begin
 loop
 if WATER_LEVEL > MAX_LEVEL
 then SOUND_ALARM;
 end if;
 delay 1.0; -- No further execution
 -- for at least 1 second
 end loop;
end WATER_MONITOR;

 - An actor task can send messages to other tasks

 - Note: A sender must know the entry name of the
 receiver, but not vice versa

 - Tasks can be either statically or dynamically
 allocated

19Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 12
 - Example:
 task type TASK_TYPE_1 is ... end;
 type TASK_PTR is access TASK_TYPE_1;
 TASK1 : TASK_TYPE_1; -- stack dynamic
 TASK_PTR := new TASK_TYPE_1; -- heap dynamic

 - Tasks can have more than one entry point

 - The specification task has an entry clause for
 each

 - The task body has an accept clause for each
 entry clause, placed in a select clause , which
 is in a loop

 - Example task with multiple entries:

 task body TASK_EXAMPLE is
 loop
 select
 accept ENTRY_1 (formal params) do
 ...
 end ENTRY_1;
 ...
 or
 accept ENTRY_2 (formal params) do
 ...
 end ENTRY_2;
 ...
 end select;
 end loop;
 end TASK_EXAMPLE;

20Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 12
 - Semantics of tasks with select clauses:

 - If exactly one entry queue is nonempty, choose
 a message from it

 - If more than one entry queue is nonempty,
 choose one, nondeterministically, from which
 to accept a message

 - If all are empty, wait

 - Extended accept clause - code following the
 clause, but before the next clause
 - Executed concurrently with the caller

- Cooperation Synchronization with
 Message Passing

 - Provided by Guarded accept clauses

 - Example:

 when not FULL(BUFFER) =>
 accept DEPOSIT (NEW_VALUE) do
 ...
 end DEPOSIT;

21Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 12
 Def: A clause whose guard is true is called open .

 Def: A clause whose guard is false is called closed .

 Def: A clause without a guard is always open.

 - Semantics of select with guarded accept clauses:

 select first checks the guards on all clauses

 If exactly one is open, its queue is checked for
 messages

 If more than one are open, nondeterministically
 choose a queue among them to check for
 messages

 If all are closed, it is a runtime error

 - A select clause can include an else clause to
 avoid the error
 - When the else clause completes, the loop
 repeats

22Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 12
Example of a task with guarded accept clauses:

task GAS_STATION_ATTENDANT is
 entry SERVICE_ISLAND (CAR : CAR_TYPE);
 entry GARAGE (CAR : CAR_TYPE);
end GAS_STATION_ATTENDANT;

task body GAS_STATION_ATTENDANT is
 begin
 loop
 select
 when GAS_AVAILABLE =>

 accept SERVICE_ISLAND (
CAR : CAR_TYPE) do

 FILL_WITH_GAS (CAR);
 end SERVICE_ISLAND;

 or
 when GARAGE_AVAILABLE =>
 accept GARAGE (

CAR : CAR_TYPE) do
 FIX (CAR);
 end GARAGE;

 else
 SLEEP;

 end select;
 end loop;
 end GAS_STATION_ATTENDANT;

23Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 12
 - Competition Synchronization with Message
 Passing:

 - Example--a shared buffer

 - Encapsulate the buffer and its operations in a
 task

 - Competition synchronization is implicit in the
 semantics of accept clauses
 - Only one accept clause in a task can be active
 at any given time

---> SHOW BUF_TASK task and the PRODUCER
 and CONSUMER tasks that use it (p. 514-515)

Task Termination

 Def: The execution of a task is completed if
 control has reached the end of its code body

 - If a task has created no dependent tasks and is
 completed, it is terminated

 - If a task has created dependent tasks and is
 completed, it is not terminated until all its
 dependent tasks are terminated

24Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 12
 - A terminate clause in a select is just a
 terminate statement

 - A terminate clause is selected when no accept
 clause is open

 - When a terminate is selected in a task, the task
 is terminated only when its master and all of the
 dependents of its master are either completed or
 are waiting at a terminate

 - A block or subprogram is not left until all of its
 dependent tasks are terminated

 - Priorities

 - The priority of any task can be set with the
 the pragma priority

 - The priority of a task applies to it only when it
 is in the task ready queue

 - Evaluation of the Ada 83 Tasking Model

- If there are no distributed processors with
 independent memories, monitors and message
 passing are equally suitable.
 Otherwise, message passing is clearly superior

25Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 12
Concurrency in Ada 95

- Ada 95 includes Ada 83 features for concurrency,
 plus two new features

1. Protected Objects
 - A more efficient way of implementing shared
 data
 - The idea is to allow access to a shared data
 structure to be done without rendezvous

 - A protected object is similar to an abstract data
 type

 - Access to a protected object is either through
 messages passed to entries, as with a task, or
 through protected subprograms

 - A protected procedure provides mutually
 exclusive read-write access to protected objects

 - A protected function provides concurrent read-
 only access to protected objects

---> SHOW the protected buffer code
 (pp. 518-519)

26Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 12
2. Asynchronous Communication
 - Provided through asynchronous select
 structures

 - An asynchronous select has two triggering
 alternatives, and entry clause or a delay

 - The entry clause is triggered when sent a
 message; the delay clause is triggered when
 its time limit is reached

---> SHOW examples (p. 519-520)

27Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 12

Java Threads

- The concurrent units in Java are run methods

- The run method is inherited and overriden in
 subclasses of the Thread class

- The Thread Class

 - Includes several methods (besides run)

 - start , which calls run , after which control
 returns immediately to start

 - yield , which stops execution of the thread
 and puts it in the task ready queue

 - sleep , which stops execution of the thread
 and blocks it from execution for the amount
 of time specified in its parameter

 - suspend , which stops execution of the thread
 until it is restarted with resume

 - resume , which restarts a suspended thread

 - stop , which kills the thread

28Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 12

 - Competition Synchronization with Java Threads

 - A method that includes the synchronized
 modifier disallows any other method from
 running on the object while it is in execution

 - If only a part of a method must be run without
 interference, it can be synchronized

 - Cooperation Synchronization with Java Threads

 - The wait and notify methods are defined in
 Object , which is the root class in Java, so
 all objects inherit them

 - The wait method must be called in a loop

 - Example - the queue

 ---> SHOW Queue class (p. 524) and the Producer
 and Consumer classes (p. 525)

