
1Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 11

Categories of languages that support OOP:

 1. OOP support is added to an existing language

 - C++ (also supports procedural and data-
 oriented programming)
 - Ada 95 (also supports procedural and data-
 oriented programming)
 - CLOS (also supports functional programming)
 - Scheme (also supports functional
 programming)

 2. Support OOP, but have the same appearance
 and use the basic structure of earlier imperative
 languages

 - Eiffel (not based directly on any previous
 language)
 - Java (based on C++)

 3. Pure OOP languages

 - Smalltalk

2Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 11
Paradigm Evolution

 1. Procedural - 1950s-1970s (procedural
 abstraction)

 2. Data-Oriented - early 1980s (data-oriented)

 3. OOP - late 1980s (Inheritance and dynamic
 binding)

Origins of Inheritance

 Observations of the mid-late 1980s :

 - Productivity increases can come from reuse

 - ADTs are difficult to reuse--never quite right

 - All ADTs are independent and at the same level

 Inheritance solves both--reuse ADTs after minor
 changes and define classes in a hierarchy

3Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 11

OOP Definitions:

 - ADTs are called classes

 - Class instances are called objects

 - A class that inherits is a derived class or a
 subclass

 - The class from which another class inherits is a
 parent class or superclass

 - Subprograms that define operations on objects
 are called methods

 - The entire collection of methods of an object is
 called its message protocol or message interface

 - Messages have two parts--a method name and the
 destination object

 - In the simplest case, a class inherits all of the
 entities of its parent

4Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 11

 - Inheritance can be complicated by access
 controls to encapsulated entities

 - A class can hide entities from its subclasses
 - A class can hide entities from its clients

 - Besides inheriting methods as is, a class can
 modify an inherited method

 - The new one overrides the inherited one
 - The method in the parent is overriden

 - There are two kinds of variables in a class:

 1. Class variables - one/class
 2. Instance variables - one/object

 - There are two kinds of methods in a class:

 1. Class methods - messages to the class
 2. Instance methods - messages to objects

 - Single vs. Multiple Inheritance

5Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 11

 - Disadvantage of inheritance for reuse:

 - Creates interdependencies among classes that
 complicate maintenance

Polymorphism in OOPLs

 - A polymorphic variable can be defined in a class
 that is able to reference (or point to) objects of
 the class and objects of any of its descendants

 - When a class hierarchy includes classes that
 override methods and such methods are called
 through a polymorphic variable, the binding to
 the correct method MUST be dynamic

 - This polymorphism simplifies the addition of
 new methods

 - A virtual method is one that does not include a
 definition (it only defines a protocol)

 - A virtual class is one that includes at least one
 virtual method

 - A virtual class cannot be instantiated

6Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 11
Design Issues for OOPLs

 1. The Exclusivity of Objects

 a. Everything is an object
 advantage - elegance and purity
 disadvantage - slow operations on simple
 objects (e.g., float)
 b. Add objects to a complete typing system
 Advantage - fast operations on simple objects
 Disadvantage - results in a confusing type
 system
 c. Include an imperative-style typing system for
 primitives but make everything else objects
 Advantage - fast operations on simple objects
 and a relatively small typing
 system
 Disadvantage - still some confusion because
 of the two type systems

 2. Are Subclasses Subtypes?

 - Does an is-a relationship hold between a parent
 class object and an object of the subclass?

7Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 11
 3. Implementation and Interface Inheritance

 - If only the interface of the parent class is visible
 to the subclass, it is interface inheritance

 Disadvantage - can result in inefficiencies

 - If both the interface and the implementation of
 the parent class is visible to the subclass, it is
 implementation inheritance

 Disadvantage - changes to the parent class
 require recompilation of
 subclasses, and sometimes even
 modification of subclasses

 4. Type Checking and Polymorphism

 - Polymorphism may require dynamic type
 checking of parameters and the return value
 - Dynamic type checking is costly and delays
 error detection
 - If overriding methods are restricted to having the
 same parameter types and return type, the
 checking can be static

8Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 11
 5. Single and Multiple Inheritance

 - Disadvantage of multiple inheritance:
 - Language and implementation complexity
 - Potential inefficiency - dynamic binding costs
 more with multiple inheritance (but not much)

 - Advantage:
 - Sometimes it is extremely convenient and
 valuable

 6. Allocation and Deallocation of Objects

 - From where are objects allocated?
 - If they all live in the heap, references to them
 are uniform

 - Is deallocation explicit or implicit?

9Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 11
7. Dynamic and Static Binding

 - Should ALL binding of messages to methods be
 dynamic?

10Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 11
Overview of Smalltalk

- Smalltalk is a pure OOP language
 - Everything is an object
 - All computation is through objects sending
 messages to objects
 - It adopts none of the appearance of imperative
 languages

- The Smalltalk Environment
 - The first complete GUI system
 - A complete system for software development
 - All of the system source code is available to
 the user, who can modify it if he/she wants

Introduction to Smalltalk

- Expressions
 - Four kinds:
 1. Literals (numbers, strings, and keywords)

 2. Variable names (all variables are references)

 3. Message expressions (see below)

 4. Block expressions (see below)

11Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 11
 - Message expressions

 - Two parts: the receiver object and the message
 itself
 - The message part specifies the method and
 possibly some parameters
 - Replies to messages are objects

 - Messages can be of three forms:
 1. Unary (no parameters)
 e.g., myAngle sin
 (sends a message to the sin method of the
 myAngle object)

 2. Binary (one parameter, an object)
 e.g., 12 + 17
 (sends the message “ + 17” to the object 12;
 the object parameter is “ 17” and the method
 is “ +”)

 3. Keyword (use keywords to organize the
 parameters)
 e.g., myArray at: 1 put: 5
 (sends the objects “ 1” and “ 5” to the at:put:
 method of the object myArray)

 - Multiple messages to the same object can be
 strung together, separated by semicolons

12Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 11
Methods

- General form:
 message_pattern [| temps |] statements

 - A message pattern is like the formal parameters
 of a subprogram
 - For a unary message, it is just the name
 - For others, it lists keywords and formal names
 - temps are just names--Smalltalk is typeless!

Assignments

- Simplest Form:
 name1 <- name2

- It is simply a pointer assignment

- RHS can be a message expression
 e.g., index <- index + 1

Blocks

- A sequence of statements, separated by periods,
 delimited by brackets
 e.g.,
 [index <- index + 1. sum <- sum + index]

13Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 11

Blocks (continued)

 - A block specifies something, but doesn’t do it
 - To request the execution of a block, send it the
 unary message, value
 e.g., […] value

 - If a block is assigned to a variable, it is evaluated
 by sending value to that variable
 e.g.,
 addIndex <- [sum <- sum + index]
 …
 addIndex value

 - Blocks can have parameters, as in
 [:x :y | statements]

 - If a block contains a relational expression, it
 returns a Boolean object, true or false

Iteration

 - The objects true and false have methods for
 building control constructs

 - The method WhileTrue: from Block is used for
 pretest logical loops. It is defined for all blocks
 that return Boolean objects.

14Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 11

Iteration (continued)

e.g.,
 [count <= 20]
 whileTrue [sum <- sum + count.
 count <- count + 1]

 - timesRepeat: is defined for integers and can be
 used to build counting loops
 e.g.,
 xCube <- 1.
 3 timesRepeat: [xCube <- xCube * x]

Selection

 - The Boolean objects have the method
 ifTrue:ifFalse: , which can be used to build
 selection
 e.g.,
 total = 0
 ifTrue: […]
 ifFalse: […]

15Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 11

Large-Scale Features of Smalltalk

 - Type Checking and Polymorphism

 - All bindings of messages to methods is dynamic

 - The process is to search the object to which
 the message is sent for the method; if not
 found, search the superclass, etc.

 - Because all variables are typeless, methods are
 all polymorphic

 - Inheritance

 - All subclasses are subtypes (nothing can be
 hidden)

 - All inheritance is implementation inheritance

 - No multiple inheritance

 - Methods can be redefined, but the two are not
 related

16Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 11

C++

 - General Characteristics :

 - Mixed typing system
 - Constructors and destructors
 - Elaborate access controls to class entities

 - Inheritance

 - A class need not be subclasses of any class

 - Access controls for members are
 1. Private (visible only in the class and friends)
 2. Public (visible in subclasses and clients)
 3. Protected (visible in the class and in
 subclasses)

 - In addition, the subclassing process can be
 declared with access controls, which define
 potential changes in access by subclasses

 - Multiple inheritance is supported

17Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 11

Inheritance (continued)

 - Dynamic Binding

 - A method can be defined to be virtual , which
 means that they can be called through
 polymorphic variables and dynamically bound
 to messages

 - A pure virtual function has no definition at all
 - A class that has at least one pure virtual
 function is an abstract class

- Evaluation

 - C++ provides extensive access control (unlike
 Smalltalk)

 - C++ provides multiple inheritance

 - In C++, the programmer must decide at design
 time which methods will be statically bound
 and which must be dynamically bound

 - Static binding is faster!

 - Smalltalk type checking is dynamic (flexible,
 but somewhat unsafe)

18Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 11

Java

 - General Characteristics

 - All data are objects except the primitive types

 - All primitive types have wrapper classes that
 store one data value

 - All objects are heap-dynamic, are referenced
 through reference variables, and most are
 allocated with new

- Inheritance

 - Single inheritance only, but there is an abstract
 class category that provides some of the
 benefits of multiple inheritance (interface)

 - An interface can include only method
 declarations and named constants

 e.g.,
 public class Clock extends Applet
 implements Runnable

 - Methods can be final (cannot be overriden)

19Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 11

 - Dynamic Binding

 - In Java, all messages are dynamically bound to
 methods, unless the method is final

 - Encapsulation

 - Two constructs, classes and packages

 - Packages provide a container for classes that
 are related

 - Entities defined without an scope (access)
 modifier have package scope, which makes
 them visible throughout the package in which
 they are defined

 - Every class in a package is a friend to the
 package scope entities elsewhere in the
 package

20Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 11
Ada 95

 - General Characteristics

 - OOP was one of the most important extensions
 to Ada 83

 - Encapsulation container is a package that
 defines a tagged type

 - A tagged type is one in which every object
 includes a tag to indicate during execution its
 type

 - Tagged types can be either private types or
 records

 - No constructors or destructors are implicitly
 called

- Inheritance

 - Subclasses are derived from tagged types

 - New entities in a subclass are added in a record

21Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 11

Example:

 with PERSON_PKG; use PERSON_PKG;
 package STUDENT_PKG is
 type STUDENT is new PERSON with
 record
 GRADE_POINT_AVERAGE : FLOAT;
 GRADE_LEVEL : INTEGER;
 end record;
 procedure DISPLAY (ST: in STUDENT);
 end STUDENT_PKG;

 - DISPLAY is being overriden from PERSON_PKG

 - All subclasses are subtypes

 - Single inheritance only, except through generics

 - Dynamic Binding

 - Dynamic binding is done using polymorphic
 variables called classwide types
 e.g., for the tagged type PERSON, the classwide
 type is PERSON’class

 - Other bindings are static

 - Any method may be dynamically bound

22Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 11

Eiffel

- General Characteristics

 - Has primitive types and objects

 - All objects get three operations, copy , clone ,
 and equal

 - Methods are called routines

 - Instance variables are called attributes

 - The routines and attributes of a class are
 together called its features

 - Object creation is done with an operator (!!)

 - Constructors are defined in a creation clause,
 and are explicitly called in the statement in
 which an object is created

 - Inheritance

 - The parent of a class is specified with the
 inherit clause

23Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 11

 - Access control

 - feature clauses specify access control to the
 entities defined in them

 - Without a modifier, the entities in a feature
 clause are visible to both subclasses and
 clients

 - With the child modifier, entities are hidden
 from clients but are visible to subclasses

 - With the none modifier, entities are hidden
 from both clients and subclasses

 - Inherited features can be hidden from
 subclasses with undefine

 - Abstract classes can be defined by including the
 deferred modifier on the class definition

 - Dynamic Binding

 - Nearly all message binding is dynamic

 - An overriding method must have parameters
 that are assignment compatible with those of
 the overriden method

24Copyright © 1998 by Addison Wesley Longman, Inc .

Chapter 11
 - Dynamic Binding (continued)

 -All overriding features must be defined in a
 redefine clause

 - Access to overriden features is possible by
 putting their names in a rename clause

 - Evaluation

 - Similar to Java in that procedural programming
 is not supported and nearly all message
 binding is dynamic

 - Elegant and clean design of support for OOP

Implementing OO Constructs

 - Class instance records (CIRs) store the state of
 an object

 - If a class has a parent, the subclass instance
 variables are added to the parent CIR

 - Virtual Method Tables (VMTs) are used for
 dynamic binding

