
1Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 8

Fundamental Characteristics of Subprograms

 1. A subprogram has a single entry point

 2. The caller is suspended during execution of the
 called subprogram

 3. Control always returns to the caller when the
 called subprogram’s execution terminates

Basic definitions:

A subprogram definition is a description of the
 actions of the subprogram abstraction

A subprogram call is an explicit request that the
 subprogram be executed

A subprogram header is the first line of the
 definition, including the name, the kind of
 subprogram, and the formal parameters

The parameter profile of a subprogram is the
 number, order, and types of its parameters

The protocol of a subprogram is its parameter
 profile plus, if it is a function, its return type

2Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 8

A subprogram declaration provides the protocol,
 but not the body, of the subprogram

A formal parameter is a dummy variable listed in
 the subprogram header and used in the
 subprogram

An actual parameter represents a value or address
 used in the subprogram call statement

Actual/Formal Parameter Correspondence:

1. Positional

2. Keyword
 e.g. SORT(LIST => A, LENGTH => N);

 Advantage : order is irrelevant
 Disadvantage : user must know the formal
 parameter’s names

Default Values:
 e.g. procedure SORT(LIST : LIST_TYPE;
 LENGTH : INTEGER := 100);
 ...
 SORT(LIST => A);

3Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 8

Procedures provide user-defined statements

Functions provide user-defined operators

Design Issues for Subprograms

1. What parameter passing methods are provided?

2. Are parameter types checked?

3. Are local variables static or dynamic?

4. What is the referencing environment of a passed
 subprogram?

5. Are parameter types in passed subprograms
 checked?

6. Can subprogram definitions be nested?

7. Can subprograms be overloaded?

8. Are subprograms allowed to be generic?

9. Is separate or independent compilation
 supported?

4Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 8
Local referencing environments

If local variables are stack-dynamic:

 - Advantages:
 a. Support for recursion
 b. Storage for locals is shared among some
 subprograms

 - Disadvantages:
 a. Allocation/deallocation time
 b. Indirect addressing
 c. Subprograms cannot be history sensitive

Static locals are the opposite

Language Examples:

1. FORTRAN 77 and 90 - most are static, but can
 have either (SAVE forces static)

2. C - both (variables declared to be static are)
 (default is stack dynamic)

3. Pascal, Modula-2, and Ada - dynamic only

5Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 8

Parameters and Parameter Passing

Semantic Models: in mode, out mode, inout mode

Conceptual Models of Transfer:

 1. Physically move a value

 2. Move an access path

Implementation Models:

 1. Pass-by-value (in mode)

 - Either by physical move or access path

 - Disadvantages of access path method:
 - Must write-protect in the called subprogram
 - Accesses cost more (indirect addressing)

 - Disadvantages of physical move:
 - Requires more storage
 - Cost of the moves

6Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 8

 2. Pass-by-result (out mode)

 - Local’s value is passed back to the caller

 - Physical move is usually used
 - Disadvantages:
 a. If value is passed, time and space
 b. In both cases, order dependence may be a
 problem
 e.g.

 procedure sub1(y: int, z: int);
 ...
 sub1(x, x);

 Value of x in the caller depends on order of
 assignments at the return

 3. Pass-by-value-result (inout mode)

 - Physical move, both ways

 - Also called pass-by-copy

 - Disadvantages:
 - Those of pass-by-result
 - Those of pass-by-value

7Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 8
 4. Pass-by-reference (inout mode)

 - Pass an access path
 - Also called pass-by-sharing

 - Advantage : passing process is efficient

 - Disadvantages :
 a. Slower accesses
 b. Can allow aliasing:
 i. Actual parameter collisions:
 e.g.
 procedure sub1(a: int, b: int);
 ...
 sub1(x, x);

 ii. Array element collisions:
 e.g.
 sub1(a[i], a[j]); /* if i = j */
 Also, sub2(a, a[i]);

 iii. Collision between formals and globals

 - Root cause of all of these is: The called
 subprogram is provided wider access to
 nonlocals than is necessary

 - Pass-by-value-result does not allow these
 aliases (but has other problems!)

8Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 8

 5. Pass-by-name (multiple mode)

 - By textual substitution

 - Formals are bound to an access method at the
 time of the call, but actual binding to a value
 or address takes place at the time of a
 reference or assignment

 - Purpose: flexibility of late binding

 - Resulting semantics :

 - If actual is a scalar variable,
 it is pass-by-reference
 - If actual is a constant expression,
 it is pass-by-value
 - If actual is an array element,
 it is like nothing else
 e.g.
 procedure sub1(x: int; y: int);
 begin
 x := 1;
 y := 2;
 x := 2;
 y := 3;
 end;

 sub1(i, a[i]);

9Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 8
 - If actual is an expression with a reference to
 a variable that is also accessible in the
 program, it is also like nothing else

 e.g. (assume k is a global variable)
 procedure sub1(x: int; y: int;
 z: int);
 begin

 k := 1;
 y := x;
 k := 5;
 z := x;
 end;

 sub1(k+1, j, i);

 - Disadvantages of pass by name:
 - Very inefficient references
 - Too tricky; hard to read and understand

 Language Examples:

 1. FORTRAN
 - Before 77, pass-by-reference
 - 77 - scalar variables are often passed by
 value-result
 2. ALGOL 60
 - Pass-by-name is default; pass-by-value is
 optional
 3. ALGOL W - Pass-by-value-result

10Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 8
 4. C - Pass-by-value

 5. Pascal and Modula-2
 - Default is pass-by-value; pass-by-reference is
 optional

 6. C++
 - Like C, but also allows reference type actual
 parameters; the corresponding formal
 parameters can be pointers to constants,
 which provide the efficiency of
 pass-by-reference with in-mode semantics

 7. Ada
 - All three semantic modes are available
 - If out , it cannot be referenced
 - If in, it cannot be assigned

 8. Java - Like C, except references instead of
 pointers

Type checking parameters
 - Now considered very important for reliability

 - FORTRAN 77 and original C: none
 - Pascal, Modula-2, FORTRAN 90, Java, and Ada:
 it is always required
 - ANSI C and C++: choice is made by the user

11Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 8
Implementing Parameter Passing

 ALGOL 60 and most of its descendants use the
 run-time stack

 - Value - copy it to the stack; references are
 indirect to the stack

 - Result - same

 - Reference - regardless of form, put the address
 in the stack

 - Name - run-time resident code segments or
 subprograms evaluate the address of the
 parameter; called for each reference to the
 formal; these are called thunks
 - Very expensive, compared to reference
 or value-result

 Ada
 - Simple variables are passed by copy (value-result)
 - Structured types can be either by copy or reference
 - This can be a problem, because
 a) Of aliases (reference allows aliases, but
 value-result does not)
 b) Procedure termination by error can produce
 different actual parameter results
 - Programs with such errors are “erroneous”

12Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 8
Multidimensional Arrays as Parameters

- If a multidimensional array is passed to a
 subprogram and the subprogram is separately
 compiled, the compiler needs to know the
 declared size of that array to build the storage
 mapping function

- C and C++
 - Programmer is required to include the declared
 sizes of all but the first subscript in the actual
 parameter
 - This disallows writing flexible subprograms
 - Solution: pass a pointer to the array and the
 sizes of the dimensions as other parameters;
 the user must include the storage mapping
 function, which is in terms of the size
 parameters (See example, p. 351)

 - Pascal
 - Not a problem (declared size is part of the array’s
 type)

 - Ada
 - Constrained arrays - like Pascal
 - Unconstrained arrays - declared size is part of
 the object declaration (See book example p. 351)

13Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 8
- Pre-90 FORTRAN
 - Formal parameter declarations for arrays can
 include passed parameters

 - e.g.
 SUBPROGRAM SUB(MATRIX, ROWS, COLS, RESULT)
 INTEGER ROWS, COLS
 REAL MATRIX (ROWS, COLS), RESULT
 ...
 END

Design Considerations for
 Parameter Passing

 1. Efficiency
 2. One-way or two-way

 - These two are in conflict with one another!

 Good programming => limited access to
 variables, which means one-way whenever
 possible

 Efficiency => pass by reference is fastest way to
 pass structures of significant size

- Also, functions should not allow reference
 parameters

14Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 8

Parameters that are Subprogram
 Names

Issues:

 1. Are parameter types checked?

 - Early Pascal and FORTRAN 77 do not
 - Later versions of Pascal, Modula-2, and
 FORTRAN 90 do
 - Ada does not allow subprogram parameters
 - C and C++ - pass pointers to functions;
 parameters can be type checked

2. What is the correct referencing environment for a
 subprogram that was sent as a parameter?

 - Possibilities:
 a. It is that of the subprogram that enacts it.
 - Shallow binding

 b. It is that of the subprogram that declared it.
 - Deep binding

 c. It is that of the subprogram that passed it.
 - Ad hoc binding
 (Has never been used)

15Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 8
 - For static-scoped languages, deep binding is
 most natural

 - For dynamic-scoped languages, shallow binding
 is most natural

Example: sub1
 sub2

 sub3
 call sub4(sub2)

 sub4(subx)
 call subx

 call sub3

What is the referencing environment of sub2 when
 it is called in sub4 ?

16Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 8
Def: An overloaded subprogram is one that has the
 same name as another subprogram in the
 same referencing environment

C++ and Ada have overloaded subprograms
 built-in, and users can write their own overloaded
 subprograms

Generic Subprograms

 A generic or polymorphic subprogram is one that
 takes parameters of different types on different
 activations

 Overloaded subprograms provide ad hoc
 polymorphism

 A subprogram that takes a generic parameter that
 is used in a type expression that describes the
 type of the parameters of the subprogram provides
 parametric polymorphism

Examples of parametric polymorphism

 1. Ada
 - Types, subscript ranges, constant values, etc.,
 can be generic in Ada subprograms and
 packages e.g. - see next page

17Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 8
generic
 type ELEMENT is private;
 type VECTOR is array (INTEGER range <>) of
 ELEMENT;
 procedure GENERIC_SORT(LIST: in out VECTOR);
 procedure GENERIC_SORT(LIST: in out VECTOR)
 is
 TEMP : ELEMENT;
 begin
 for INDEX_1 in LIST'FIRST ..
 INDEX_1'PRED(LIST'LAST) loop
 for INDEX_2 in INDEX'SUCC(INDEX_1) ..
 LIST'LAST loop
 if LIST(INDEX_1) > LIST(INDEX_2) then
 TEMP := LIST (INDEX_1);
 LIST(INDEX_1) := LIST(INDEX_2);
 LIST(INDEX_2) := TEMP;
 end if;
 end loop; -- for INDEX_1 ...
 end loop; -- for INDEX_2 ...
 end GENERIC_SORT;

procedure INTEGER_SORT is new GENERIC_SORT(
 ELEMENT => INTEGER;
 VECTOR => INT_ARRAY);

18Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 8
- Ada generics are used to provide the functionality
 of parameters that are subprograms; generic part
 is a subprogram

 Example:

 generic
 with function FUN(X : FLOAT) return FLOAT;
 procedure INTEGRATE(LOWERBD : in FLOAT;
 UPPERBD : in FLOAT;
 RESULT : out FLOAT);
 procedure INTEGRATE(LOWERBD : in FLOAT;
 UPPERBD : in FLOAT;
 RESULT : out FLOAT) is
 FUNVAL : FLOAT;
 begin
 ...
 FUNVAL := FUN(LOWERBD);
 ...
 end;

INTEGRATE_FUN1 is new INTEGRATE(FUN => FUN1);

2. C++
 - Templated functions
 - e.g.
 template <class Type>
 Type max(Type first, Type second) {
 return first > second ? first : second;
 }

19Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 8

C++ template functions are instantiated implicitly
 when the function is named in a call or when its
 address is taken with the & operator

Another example:

template <class Type>
void generic_sort(Type list[], int len) {
 int top, bottom;
 Type temp;
 for (top = 0; top < len - 2; top++)
 for (bottom = top + 1; bottom < len - 1;
 bottom++) {
 if (list[top] > list[bottom]) {
 temp = list [top];
 list[top] = list[bottom];
 list[bottom] = temp;
 } //** end of for (bottom = ...
 } //** end of generic_sort

Example use:

float flt_list[100];
...
generic_sort(flt_list, 100); // Implicit
 // instantiation

20Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 8
Def: Independent compilation is compilation of
 some of the units of a program separately from
 the rest of the program, without the benefit of
 interface information

Def: Separate compilation is compilation of some of
 the units of a program separately from the rest
 of the program, using interface information to
 check the correctness of the interface between
 the two parts.

Language Examples:

 FORTRAN II to FORTRAN 77 - independent

 FORTRAN 90, Ada, Modula-2, C++ - separate

 Pascal - allows neither

Functions

 Design Issues:

 1. Are side effects allowed?
 a. Two-way parameters (Ada does not allow)
 b. Nonlocal reference (all allow)
 2. What types of return values are allowed?

21Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 8

Functions (continued)

 Language Examples (for possible return types):

 1. FORTRAN, Pascal, Modula-2 - only simple types

 2. C - any type except functions and arrays

 3. Ada - any type (but subprograms are not types)

 4. C++ and Java - like C, but also allow classes to
 be returned

Accessing Nonlocal Environments

Def: The nonlocal variables of a subprogram are
 those that are visible but not declared in the
 subprogram

Def: Global variables are those that may be visible
 in all of the subprograms of a program

22Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 8

Methods:

1. FORTRAN COMMON
 - The only way in pre-90 FORTRANs to access
 nonlocal variables
 - Can be used to share data or share storage

2. Static scoping - discussed in Chapter 4

3. External declarations - C

 - Subprograms are not nested

 - Globals are created by external declarations
 (they are simply defined outside any function)

 - Access is by either implicit or explicit
 declaration

 - Declarations (not definitions) give types to
 externally defined variables (and say they are
 defined elsewhere)

4. External modules - Ada and Modula-2
 - More about these later (Chapter 10)

5. Dynamic Scope - discussed in Chapter 4

23Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 8

User-Defined Overloaded Operators

Nearly all programming languages have overloaded
 operators

Users can further overload operators in C++ and
 Ada (Not carried over into Java)

Example (Ada) (assume VECTOR_TYPE has been
 defined to be an array type with INTEGER elements):

function "*"(A, B : in VECTOR_TYPE)
 return INTEGER is
 SUM : INTEGER := 0;
 begin
 for INDEX in A'range loop
 SUM := SUM + A(INDEX) * B(INDEX);
 end loop;
 return SUM;
 end "*";

Are user-defined overloaded operators good or bad?

24Copyright © 1998 by Addison Wesley Longman, Inc.

Chapter 8

Coroutines

A coroutine is a subprogram that has multiple
 entries and controls them itself

 - Also called symmetric control

- A coroutine call is named a resume

- The first resume of a coroutine is to its beginning,
 but subsequent calls enter at the point just after
 the last executed statement in the coroutine

- Typically, coroutines repeatedly resume each
 other, possibly forever

- Coroutines provide quasiconcurrent execution of
 program units (the coroutines)

 - Their execution is interleaved, but not
 overlapped

