
Copyright © 1998 by Addison Wesley Longman, Inc. 1

Chapter 4
Names

 - Design issues:
 - Maximum length?
 - Are connector characters allowed?
 - Are names case sensitive?
 - Are special words reserved words or keywords?

Length

 - FORTRAN I: maximum 6
 - COBOL: maximum 30
 - FORTRAN 90 and ANSI C: maximum 31
 - Ada: no limit, and all are significant
 - C++: no limit, but implementors often impose one

Connectors

 - Pascal, Modula-2, and FORTRAN 77 don't allow
 - Others do

Copyright © 1998 by Addison Wesley Longman, Inc. 2

Chapter 4

Case sensitivity

 - Disadvantage: readability (names that look alike
 are different)
 - worse in Modula-2 because predefined names
 are mixed case (e.g. WriteCard)

 - C, C++, Java, and Modula-2 names are case
 sensitive
 - The names in other languages are not

Special words

 Def: A keyword is a word that is special only in
 certain contexts

 - Disadvantage: poor readability

 Def: A reserved word is a special word that
 cannot be used as a user-defined name

Copyright © 1998 by Addison Wesley Longman, Inc. 3

Chapter 4
A variable is an abstraction of a memory cell

Variables can be characterized as a sextuple of
 attributes:
 name, address, value, type, lifetime, and scope

Name - not all variables have them

Address - the memory address with which it is
 associated

 - A variable may have different addresses at
 different times during execution

 - A variable may have different addresses at
 different places in a program

 - If two variable names can be used to access the
 same memory location, they are called aliases

 - Aliases are harmful to readability

Copyright © 1998 by Addison Wesley Longman, Inc. 4

Chapter 4
 - How aliases can be created:

 - Pointers, reference variables, Pascal variant
 records, C and C++ unions, and FORTRAN
 EQUIVALENCE

 (and through parameters - discussed in
 Chapter 8)

 - Some of the original justifications for aliases are
 no longer valid; e.g. memory reuse in FORTRAN
 - replace them with dynamic allocation

Type - determines the range of values of variables
 and the set of operations that are defined
 for values of that type; in the case of
 floating point, type also determines the
 precision

Value - the contents of the location with which the
 variable is associated

 - Abstract memory cell - the physical cell or
 collection of cells associated with a variable

Copyright © 1998 by Addison Wesley Longman, Inc. 5

Chapter 4

Def: A binding is an association, such as between
 an attribute and an entity, or between an
 operation and a symbol

Def: Binding time is the time at which a binding
 takes place.

The l-value of a variable is its address
The r-value of a variable is its value

Possible binding times :

1. Language design time--e.g., bind operator
 symbols to operations

2. Language implementation time--e.g., bind fl. pt.
 type to a representation

3. Compile time--e.g., bind a variable to a type in
 C or Java

4. Load time--e.g., bind a FORTRAN 77 variable to a
 memory cell (or a C static variable)

5. Runtime--e.g., bind a nonstatic local variable to
 a memory cell

Copyright © 1998 by Addison Wesley Longman, Inc. 6

Chapter 4
Def: A binding is static if it occurs before run time
 and remains unchanged throughout program
 execution.

Def: A binding is dynamic if it occurs during
 execution or can change during execution of
 the program.

Type Bindings
 1. How is a type specified?
 2. When does the binding take place?

 If static, type may be specified by either an
 explicit or an implicit declaration

 Def: An explicit declaration is a program statement
 used for declaring the types of variables

 Def: An implicit declaration is a default mechanism
 for specifying types of variables (the first
 appearance of the variable in the program)

 FORTRAN, PL/I, BASIC, and Perl provide implicit
 declarations
 Advantage: writability
 Disadvantage: reliability (less trouble with Perl)

Copyright © 1998 by Addison Wesley Longman, Inc. 7

Chapter 4
Dynamic Type Binding

 - Specified through an assignment statement
 e.g. APL
 LIST <- 2 4 6 8
 LIST <- 17.3

 Advantage: flexibility (generic program units)
 Disadvantages:
 1. High cost (dynamic type checking and
 interpretation)
 2. Type error detection by the compiler is difficult

Type Inferencing (ML, Miranda, and Haskell)
 - Rather than by assignment statement, types are
 determined from the context of the reference

Storage Bindings

Allocation - getting a cell from some pool of
 available cells
Deallocation - putting a cell back into the pool

Def: The lifetime of a variable is the time during
 which it is bound to a particular memory cell

Copyright © 1998 by Addison Wesley Longman, Inc. 8

Chapter 4
Categories of variables by lifetimes

1. Static --bound to memory cells before execution
 begins and remains bound to the same memory
 cell throughout execution.
 e.g. all FORTRAN 77 variables, C static variables

 Advantage: efficiency (direct addressing),
 history-sensitive subprogram support

 Disadvantage: lack of flexibility (no recursion)

2. Stack-dynamic --Storage bindings are
 created for variables when their declaration
 statements are elaborated.
 - If scalar, all attributes except address are
 statically bound
 e.g. local variables in Pascal and C subprograms

 Advantage: allows recursion; conserves storage
 Disadvantages:
 - Overhead of allocation and deallocation
 - Subprograms cannot be history sensitive
 - Inefficient references (indirect addressing)

Copyright © 1998 by Addison Wesley Longman, Inc. 9

Chapter 4

3. Explicit heap-dynamic --Allocated and
 deallocated by explicit directives, specified by
 the programmer, which take effect during
 execution

 - Referenced only through pointers or references

 e.g. dynamic objects in C++ (via new and delete)
 all objects in Java

 Advantage: provides for dynamic storage
 management
 Disadvantage: inefficient and unreliable

4. Implicit heap-dynamic --Allocation and
 deallocation caused by assignment statements
 e.g. all variables in APL

 Advantage: flexibility
 Disadvantages:
 - Inefficient, because all attributes are dynamic
 - Loss of error detection

Copyright © 1998 by Addison Wesley Longman, Inc. 10

Chapter 4
Type Checking

 - Generalize the concept of operands and operators
 to include subprograms and assignments

 Def: Type checking is the activity of ensuring that
 the operands of an operator are of compatible
 types

 Def: A compatible type is one that is either legal for
 the operator, or is allowed under language
 rules to be implicitly converted, by compiler-
 generated code, to a legal type. This automatic
 conversion is called a coercion .

 Def: A type error is the application of an operator to
 an operand of an inappropriate type

- If all type bindings are static, nearly all type
 checking can be static

- If type bindings are dynamic, type checking must
 be dynamic

 Def: A programming language is strongly typed if
 type errors are always detected

Copyright © 1998 by Addison Wesley Longman, Inc. 11

Chapter 4
Advantage of strong typing: allows the detection of
 the misuses of variables that result in type errors

Languages:

1. FORTRAN 77 is not: parameters, EQUIVALENCE

2. Pascal is not: variant records

3. Modula-2 is not: variant records, WORD type

4. C and C++ are not: parameter type checking
 can be avoided; unions are not type checked

5. Ada is, almost (UNCHECKED CONVERSION is loophole)
 (Java is similar)
Coercion rules strongly affect strong typing--they
can weaken it considerably (C++ versus Ada)

Dynamic Type Binding

Advantage of dynamic type binding: programming
 flexibility
 Disadvantages:
 1. efficiency
 2. late error detection (costs more)

Copyright © 1998 by Addison Wesley Longman, Inc. 12

Chapter 4

Type Compatibility

Def: Type compatibility by name means the two
 variables have compatible types if they are in
 either the same declaration or in declarations
 that use the same type name

 - Easy to implement but highly restrictive:

 - Subranges of integer types are not compatible
 with integer types

 - Formal parameters must be the same type as
 their corresponding actual parameters (Pascal)

Def: Type compatibility by structure means that two
 variables have compatible types if their types
 have identical structures

 - More flexible, but harder to implement

Copyright © 1998 by Addison Wesley Longman, Inc. 13

Chapter 4
Consider the problem of two structured types:

 - Suppose they are circularly defined
 - Are two record types compatible if they are
 structurally the same but use different field
 names?
 - Are two array types compatible if they are the
 same except that the subscripts are different?
 (e.g. [1..10] and [-5..4])
 - Are two enumeration types compatible if their
 components are spelled differently?

- With structural type compatibility, you cannot
 differentiate between types of the same structure
 (e.g. different units of speed, both float)

Language examples :

 Pascal: usually structure, but in some cases name
 is used (formal parameters)

 C: structure, except for records

 Ada: restricted form of name
 - Derived types allow types with the same
 structure to be different
 - Anonymous types are all unique, even in:
 A, B : array (1..10) of INTEGER:

Copyright © 1998 by Addison Wesley Longman, Inc. 14

Chapter 4
Scope

 Def: The scope of a variable is the range of
 statements over which it is visible

 Def: The nonlocal variables of a program unit are
 those that are visible but not declared there

 The scope rules of a language determine how
 references to names are associated with variables

Static scope

 - Based on program text

 - To connect a name reference to a variable, you (or
 the compiler) must find the declaration

 - Search process: search declarations, first locally,
 then in increasingly larger enclosing scopes, until
 one is found for the given name

 - Enclosing static scopes (to a specific scope) are
 called its static ancestors ; the nearest static
 ancestor is called a static parent

Copyright © 1998 by Addison Wesley Longman, Inc. 15

Chapter 4
Variables can be hidden from a unit by having a
"closer" variable with the same name

- C++ and Ada allow access to these "hidden"
 variables

Blocks - a method of creating static scopes inside
program units--from ALGOL 60

Examples:

C and C++: for (...) {
 int index;
 ...
 }

Ada: declare LCL : FLOAT;
 begin

 ...
 end

Copyright © 1998 by Addison Wesley Longman, Inc. 16

Chapter 4
Evaluation of Static Scoping

Consider the example:
 Assume MAIN calls A and B
 A calls C and D
 B calls A and E

 MAIN
 A

 C

 D

 B

 E

MAIN

 A B

C D E

MAIN MAIN

A B A B

C D E C D E

Copyright © 1998 by Addison Wesley Longman, Inc. 17

Chapter 4
Suppose the spec is changed so that D must now
access some data in B

Solutions:

1. Put D in B (but then C can no longer call it and
 D cannot access A's variables)

2. Move the data from B that D needs to MAIN (but
 then all procedures can access them)

Same problem for procedure access!

Overall: static scoping often encourages many
 globals

Dynamic Scope

- Based on calling sequences of program units, not
 their textual layout (temporal versus spatial)

- References to variables are connected to
 declarations by searching back through the chain
 of subprogram calls that forced execution to this
 point

Copyright © 1998 by Addison Wesley Longman, Inc. 18

Chapter 4
Example:

 MAIN
 - declaration of x
 SUB1
 - declaration of x -
 ...
 call SUB2
 ...

 SUB2
 ...
 - reference to x -
 ...

 ...
 call SUB1
 ...

MAIN calls SUB1
SUB1 calls SUB2
SUB2 uses x

Static scoping - reference to x is to MAIN's x

Dynamic scoping - reference to x is to SUB1's x

Copyright © 1998 by Addison Wesley Longman, Inc. 19

Chapter 4
Evaluation of Dynamic Scoping:
 - Advantage: convenience
 - Disadvantage: poor readability

Scope and lifetime are sometimes closely related,
 but are different concepts!!
 - Consider a static variable in a C or C++ function

Referencing Environments

Def: The referencing environment of a statement is
 the collection of all names that are visible in
 the statement

- In a static scoped language, that is the local
 variables plus all of the visible variables in all of
 the enclosing scopes
 - See book example (p. 184)

- A subprogram is active if its execution has begun
 but has not yet terminated

- In a dynamic-scoped language, the referencing
 environment is the local variables plus all visible
 variables in all active subprograms
 - See book example (p. 185)

Copyright © 1998 by Addison Wesley Longman, Inc. 20

Chapter 4
Def: A named constant is a variable that is bound to
 a value only when it is bound to storage

 - Advantages: readability and modifiability

The binding of values to named constants can be
either static (called manifest constants) or dynamic

Languages:
 Pascal: literals only
 Modula-2 and FORTRAN 90: constant-valued
 expressions
 Ada, C++, and Java : expressions of any kind

Variable Initialization

 Def: The binding of a variable to a value at the time
 it is bound to storage is called initialization

 Initialization is often done on the declaration
 statement

 e.g., Ada
 SUM : FLOAT := 0.0;

