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Abstract—A magnetic and inertial measurement unit (MIMU)
usually measures acceleration, rotation rate, and earth’s magnetic
field in order to determine a body’s attitude. In order to find
the orientation information using all sensor information a fusion
algorithm is used. Extended Kalman filtering is a well known
technique that has been widely applied in many applications used
for state estimation. The main idea behind the algorithm is that
a series of observations over time is used to produce estimates of
unknown states leading to more precise orientation information
than compared to when estimated states were only based on
single observations. However, one problem exists, namely the
Extended Kalman filtering solution becomes very poor when
abrupt acceleration motions occur. In order to avoid this problem,
an optimization algorithm can be integrated into the filtering
mechanism as a dynamic model correction. Thus, this paper
introduces a genetic algorithm to be utilized as a noise-adaptive
mechanism in order to tune the Extended Kalman filter process.

I. INTRODUCTION

Orientation information in a three-dimensional space is one
of the most important components required for navigation,
guidance and control of an object such as an unmanned air ve-
hicle, a drone, etc. An Attitude and Heading Reference System
(AHRS) is used to determine the orientation of an object which
it is attached to. In the last decade, investigations of attitude
estimation have been conducted with low-cost Micro Electro-
Mechanical Systems (MEMS) [1][2]. Even though MEMS
sensors are light weight and small in size and thus applicable
to many areas (e.g., human motion tracking), however, they
suffer from noise and errors that get accumulated over time.
Therefore, the calibration and validation of the AHRS is very
important in order to achieve good performance and accuracy.

For an AHRS, sensor data measured by a gyroscope,
accelerometer, and magnetometer also known as MIMU (Mag-
netic and Inertial Measurement Unit) can be used. An AHRS
consists of an algorithm which provides the orientation of the
sensors with respect to a navigation frame. The orientation
is usually represented as Euler angles (roll, pitch and yaw).
The aim of an AHRS is to combine the sensor data from
the gyroscope, accelerometer and magnetometer to obtain the
orientation. An AHRS is conceptually divided into two blocks
in order to provide the orientation: (1) from the gyroscope,
and (2) from the accelerometer and magnetometer. These two
blocks need to be weighted in order to retrieve the optimal

orientation information. There are different types of filters,
orientation filters and general purpose Bayesian estimation
filters. Examples of orientation filters are the complementary
filter [3], and the Kalman filter [4]. Examples of general
purpose Bayesian estimation filters are Mahony [5], and Madg-
wick [6].

Extended Kalman filtering is a well known technique that
has been widely used in many applications for state estimation.
The main idea is that the algorithm uses a series of observa-
tions over time to produce estimates of unknown states. In
particular, the estimate of a series of observations is more
precise than one based on a single observation alone. The
problem of the Extended Kalman filtering technique, however,
is when abrupt acceleration motions occur, then the filtering
solutions become very poor. In order to avoid this problem,
an optimization algorithm can be embedded into the filtering
mechanism to serve as a dynamic model correction unit. Thus,
this paper uses a genetic algorithm to be utilized as a noise-
adaptive mechanism in order to tune the Extended Kalman
filter process.

II. ADAPTIVE EXTENDED KALMAN FILTER

This section introduces the Extended Kalman filter first,
followed by the discrete-time extended version as well as the
adaptive extended version. Afterwards, the genetic algorithm
is described in general followed by a description on how the
algorithm is used to assist the Extended Kalman filter process.

A. Extended Kalman Filter

Figure 1 shows the block diagram of the Extended Kalman
filter. The figure shows a closed loop system consisting of
four steps: (1) prediction, (2) Kalman gain, (3) update, and (4)
quaternion normalization. The MIMU sensor input is provided
during the update step. After each of the four steps are
executed, the output in the form of an estimated orientation is
provided.

The Extended Kalman filter is used to model nonlinear
systems that deal with cases that are guided by the nonlinear
stochastic differential equations such as:

ẋ = f(x, t) + u(t) (1)



Fig. 1. Sensor data of gyroscope, accelerometer, magnetometer

z = h(x, t) + v(t) (2)

where u(t) and v(t) are white noise sequences with zero
means and they are mutually independent:

E[u(t)uT (τ)] = qδ(t− τ); E[v(t)vT (τ)]
= rδ(t− τ); E[u(t)vT (τ)] = 0

(3)

where δ(t) is the Dirac delta function, E[·] is the expectation,
and superscript T represents the matrix transpose.

In the discrete-time equivalent form, Equations (1) and (2)
can be written as:

xk+1 = f(xk, k) + wk (4)

zk = h(xk, k) + vk (5)

where xk ∈ <n is the state vector, wk ∈ <m is the process
noise vector, zk ∈ <m measurement vector, and vk ∈ <m

measurement noise vector. In Equations (4) and (5), wk and
vk are zero mean Gaussian white noise sequences having zero
cross-correlation with each other such as:

E[wkwT
i ] = Qkδik (6)

E[vkvT
i ] = Rkδik (7)

E[wkvT
i ] = 0 for all i and k (8)

where Qk is the process noise covariance matrix, and Rk

is the measurement noise covariance matrix. The Kronecker
delta function δik is given by:

δik =

{
1, i = k
0, i 6= k

(9)

B. Discrete-Time Extended Kalman Filter

The Discrete-Time Extended Kalman Filter algorithm is
given in Algorithm 1. Equations (10) - (12) are measurement
update equations, whereas Equations (13) - (15) are time
update equations from step k to k+1. The equations transform
the measurement value into a priori estimation in order to
calculate an improved posteriori estimation. Pk is the error
covariance matrix defined by E[(xk − x̂k)(xk − x̂k)

T ], for
which x̂k is an estimate of the system state vector xk and Kk

is the Kalman gain matrix. The algorithm starts with initial
condition values x̂−

0 and P−
0 . As soon as a new measurement

zk becomes available over time, the estimation of states and
the corresponding error covariance follow recursively. More
details on the Extended Kalman Filter can be found in [7],
[8], [9].

C. Adaptive Extended Kalman Filter

As mentioned previously, poor knowledge of the noise
statistics may seriously degrade the performance of the Ex-
tended Kalman filter. Thus, an adaptive extended Kalman filter
can be used to make use of an noise-adaptive filter in order to
estimate the noise covariance matrices as closely as possible.
In [10], adaptive approaches are categorized into:

• Bayesian
• Maximum likelihood
• Correlation and covariance matching
The idea behind the correlation and covariance matching

is to match the actual value of the covariance of the residual
consistent with its theoretical value. Thus, this category of
adaptive approaches has been widely studied. From the incom-
ing measurement zk, and the optimal prediction x̂−

k obtained
during the previous step, the innovation sequence is defined
as:

vk = zk − ẑ−k (16)

The innovation sequence represents the discrepancy between
the predicted measurement and the actual measurement. In
particular, it constitutes the additional information available to
the filter as a consequence of the new observation zk. The
innovation sequence vk is a zero-mean Gaussian white noise



Algorithm 1 Discrete-Time Extended Kalman Filter Algo-
rithm
1. Initialize the state vector and state covariance matrix:

x̂−
0 and P−

0

2. Compute the Kalman gain matrix from the state covariance
and estimated measurement covariance:

Kk = P−
k HT

k [HkP−
k HT

k + Rk]
−1 (10)

3. The prediction error vector from the Kalman gain matrix
is multiplied to obtain the state correction vector and update
state vector as follows:

x̂k = x̂−
k + Kk[zk − ẑ−k ], with ẑ−k = h(x̂−

k , k) (11)

4. Update of error covariance:

Pk = [I−KkHk]P
−
k (12)

5. Prediction of new state vector and state covariance matrix:

x̂−
k+1 = f(x̂k, k) (13)

P−
k+1 = ΦkPkΦT

k + Qk (14)

where the linear approximation equations for the system and
measurement matrices are obtained by the following, respec-
tively:

Φk ≈
∂fk
∂x

∣∣∣
x=x̂−

k

; Hk ≈
∂hk

∂x

∣∣∣
x=x̂−

k

(15)

sequence. By taking the variances of both sides, we obtain the
theoretical covariance given as:

Cvk = E[vkvT
k ] = HkP−

k HT
k + Rk (17)

which can be written as:

Cvk = Hk(ΦkPkΦT
k + Qk)H

T
k + Rk (18)

Then, the estimate of Rk can be calculated by:

R̂k = Ĉvk −HkP−
k HT

k (19)

where Ĉvk is the statistical sample variance estimate of
Cvk. Cvk can be computed by averaging the values inside a
moving estimation window of size N :

Ĉvk =
1

N

k∑
j=j0

vjv
T
j (20)

where N is the number of samples (also referred as the
window size), j0 = k − N + 1 is the first sample inside the

estimation window. Thus, based on the residual based estimate,
the estimate of the process noise Qk can be calculated by:

Q̂k =
1

N

k∑
j=j0

4xj4xT
j + Pk −ΦkPk−1Φ

T
k (21)

where 4xk = xk − x̂−
k . This equation can be written in

terms of the innovation sequence as:

Q̂k ≈ KkĈvkKT
k (22)

Regarding the window size N , if the value is too small,
then the estimation of the the measurement covariance will
be too noisy. If the window is large, then the estimation of
the measurement covariance will be smoother, however, at
the expense of a long transient time. The window size is
usually empirically determined in order to provide statistical
smoothing. An adaptive extended Kalman filter can be used as
a noise adaptive filter to estimate the noise covariance matrices
to make the results of the Kalman filter more accurate. The
main benefit of the adaptive algorithm lies in that it keeps the
covariance consistent with the actual performance of the filter.
For more details please refer to [11].

Another approach for the adaptivity of the algorithm is the
use of fading memory [11]. The idea is to apply a factor matrix
to the predicted covariance matrix in order to deliberately
increase the variance of the predicted state vector, i.e., to
incorporate a fading memory:

P−
k+1 = λkΦkPkΦT

k + Qk (23)

where λk = diag(λ1, λ1, ..., λm). The main difference
between the fading memory algorithm is the calculation of
the scale factor matrix λk. One way would be to assign the
scale factors as constants. When λi ≤ 1 (i = 1, 2, ...,m) the
filtering is in steady processing, while for λi > 1 the filtering
might be unstable. For the case where λi = 1, the standard
Kalman filtering deteriorates.

Another type of adaptation can be accomplished by intro-
ducing a scale factor directly to the Qk and/or Rk matrices
[11]. In order to account for greater uncertainty, the covari-
ances need to be updated. This can be done by one of the
following methods:

• Qk → Qk−1 +4Qk; Rk → Rk−1 +4Rk

• Qk → Qkα
−(k+1); +Rk → Rkβ

−(k+1),
α ≥ 1; β ≥ 1

• Qk → αQk;Rk → βRk

Thus, Equations (4) and (5) can be updated as follows:

P−
k+1 = ΦkPkΦT

k + αQk (24)

Kk = P−
k HT

k [HkP−
k HT

k + βRk]
−1 (25)

When α = β = 1, then we have the standard Kalman Filter.



D. Optimization Approach: Genetic Algorithm

The optimization method referred to as genetic algorithm is
part of a group called evolutionary algorithms. Evolutionary
algorithms are inspired by natural phenomena of biological
evolution whereby the common idea is that given a population
of individuals, natural selection (biologically referred to as sur-
vival of the fittest) is used to improve the fitness of the overall
population. For example, given a function to be maximized,
a set of candidate solutions is randomly created and a fitness
function is used as a fitness measure (the higher the better)
is applied. Based on this fitness measure, some of the better
candidates are chosen to undergo recombination and mutation
(recombination is applied to two candidates and results in two
new candidates, whereas mutation is only applied to one can-
didate and results in one new candidate). After recombination
and mutation are applied, the newly created candidates replace
the old ones and the next generation begins. This process is
repeated until a candidate with sufficient quality is determined
or a predefined number of iterations is reached [12].

Fig. 2. Flowchart diagram of Genetic Algorithm

Figure 2 shows the overview diagram of the steps in a
Genetic algorithm. First, the problem (see next subsection)
needs to be encoded using a chromosome representation, and
a fitness equation needs to be defined (see next subsection).
Afterwards, the selection method needs to be chosen, and the
crossover and mutation operations need to be defined. The
overall flow of the algorithm is as follows: first, a randomly
generated population is initialized, then the fitness of each
chromosome (solution) is evaluated, afterwards the selection
process is run whereby the roulette wheel selection method
was chosen. Then, crossover and mutation operations are
applied in order to recombine potential better solutions. The

algorithm terminates once the maximum number of iterations
has been reached.

III. GENETIC ALGORITHM BASED EXTENDED KALMAN
FILTER (GA-EKF)

The innovation information is used for assisting the GA
optimization. In particular, the difference between Ĉvk and
Cvk is detected, referred to as detect1, as the trace of the
innovation covariance matrix:

detect1 =
tr(Ĉvk)

tr(Cvk)
(26)

The detect1 parameter can be used to detect any divergence
or outliers during the adaptive filtering process. The second
parameter for detection, detect2, is given by:

detect2 =
1

N

k∑
j=j0

(∆x̂k) (27)

where:

∆x̂k = x̂k − x̂−
k = Kkvk (28)

detect2 is utilized to assist detect1. Both parameters are
used to identify the degree of dynamical change of motion.
Thus, α is adapted based on the following fitness function:

fitness =
tr(Ĉvk)

tr[Hk(ΦkPkΦT
k + αQk)HT

k + Rk]
(29)

An optimized α will keep the predicted covariance matrix
consistent with the actual one. The details of the filtering
process of GA-EKF is given in Figure 3.

IV. EXPERIMENTS

In this section, the description of the data set used is given,
followed by the parameters of the simulation experiments, and
the results that were obtained.

A. Data Description

We evaluated the accuracy of the orientation estimation
algorithm using the publicly available MAV data sets [13] with
ground-truth orientation in Euler angles from a motion-capture
system. The datasets are recorded using an AscTec ‘Pelican’
quadrotor (see Figure 4), flying in an indoor environment of
size 10m×10m×10m. The quadrotor is equipped with eight
Vicon cameras, and the data sets were collected by performing
1, 2, and 3 loops, respectively.

Figure 5 shows the trajectory traveled by the quadrotor,
tracked by the motion capture system, during the ‘1loop’
experiment (2D top view (left) and 3D side view (right) of the
trajectory traveled by the quadrotor during the ‘1LoopDown’
experiment). The data sets include acceleration and angular
velocity readings from the IMU.



Fig. 3. Flowchart diagram of GA-assisted Kalman filter process

Fig. 4. Quadrotor frames [14]

B. Simulation Experiments

The parameters of the GA that were established after
preliminary experiments are the following:

• Size of a chromosome population = 30
• Number of genes in a chromosome = 8
• Crossover probability = 0.8
• Mutation probability = 0.001

C. Results of Experiments

We compare our method (GA-EKF) against the orientation
estimation proposed by Madgwick [16], the Extended Kalman
Filter (EKF) proposed by Sabatini [17], and the algorithm
provided by the low-level processor of the AscTec quadrotor
[13], whose output is provided by the data sets in Euler angles.
The comparison values for Madgwick, AscTech and EKF were
obtained from [13].

Tables I to III show the Root Mean Square Error (RMSE)
for roll, pitch, and yaw, respectively. From the values it

can be observed that for all three datasets GA-EKF scores
best outperforming the comparison methods. Please note that
the Madgwick filter is a constant gain filter and thus, the
performance varies based on the value chosen for the gain.
This gain was obtained by minimizing the RMSE.

Figure 6 shows the norm RMSE values for Madgwick,
AscTec, EKF, and the proposed GA-EKF, respectively. Again,
the norm RMSE values for GA-EKF obtained the best results
compared to the other three approaches.

TABLE I
RMSE OF ROLL ANGLE IN RADIANS

Data set Madgwick AscTec EKF GA-EKF

1LoopDown 0.037 0.0464 0.0287 0.0259
2LoopsDown 0.047 0.0338 0.0314 0.0303
3LoopsDown 0.405 0.0315 0.0331 0.0294

TABLE II
RMSE OF PITCH ANGLE IN RADIANS

Data set Madgwick AscTec EKF GA-EKF

1LoopDown 0.0336 0.0369 0.0284 0.0267
2LoopsDown 0.0369 0.0313 0.0384 0.0284
3LoopsDown 0.036 0.0329 0.0392 0.0311

TABLE III
RMSE OF YAW ANGLE IN RADIANS

Data set Madgwick AscTec EKF GA-EKF

1LoopDown 0.2543 0.3388 0.1888 0.1951
2LoopsDown 0.9229 0.3182 0.3345 0.2576
3LoopsDown 1.3327 0.3255 0.3545 0.3091

Table IV shows the computational time of Madgwick, EKF
and GA-EKF. The most time consuming algorithm is GA-EKF



Fig. 5. Quadrotor during 1loop experiment [15]

Fig. 6. Norm RMSE values for all approaches

followed by EKF, and the Madgwick filter by far performs the
fastest.

TABLE IV
COMPUTATIONAL TIME IN SECONDS

Data set Time (average) Std. dev.

Madgwick 1.2839 0.7101
EKF 7.0408 0.2342

GA-EKF 8.3827 0.2595

V. CONCLUSION

The use of the Extended Kalman filter to find the orientation
information of data collected from a magnetic and inertial
measurement unit (MIMU) is very common. The Kalman filter
in particular has proved to be a well-established technique
in the area of object tracking for UAVs. The idea behind
the algorithm is that a series of observations over time is
used to produce estimates of unknown states leading to more
precise orientation information than compared to when only
single observations were used. However, one problem with
the Kalman filter exists, which is that the tracking solution
becomes very poor when abrupt acceleration motions occur. In
order to alleviate this problem, an optimization algorithm can
be embedded into the filtering mechanism to act as a dynamic
model correction unit. Thus, this paper introduced a genetic
algorithm to be used as a noise-adaptive mechanism in order
to take care of abrupt acceleration motion errors.

The simulation experiments investigated the orientation esti-
mation of three data sets and compared the GA-EKF algorithm
with the Madgwick filter, the Extended Kalman Filter (EKF),
and the algorithm provided by the low-level processor of the
AscTec quadrotor. The orientation estimation were given in
Euler angles with the ground truth provided by the data sets.
The results show that the proposed GA-EKF algorithm scored
best in terms of the Root Mean Square Error (RMSE) for roll,
pitch, and yaw, respectively. The same trend was seen for the
norm RMSE results.
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