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Abstract—An Attitude and Heading Reference System (AHRS)
provides orientation information of an object such as an Un-
manned Air Vehicle by fusing sensor data from a magnetic
and inertial measurement unit (MIMU). A MIMU consists of
three components, which are a gyroscope, an accelerometer and
a magnetometer. There are different fusion or filter algorithms
available of which we have chosen the Mahony, the Madgwick,
and the weighted filter. One of the shortcomings of all algorithms
is that there is a control parameter involved in each which
needs to be determined before applying the algorithms. Only an
algorithm with an optimized control parameter achieves the best
orientation information. Thus, a Particle Swarm Optimization
algorithm is used to identify the control parameter of each filter
algorithm. Experimental results show the influence the control
parameter has on each algorithm.

I. INTRODUCTION

Research focusing on the localization of objects and people
has received significant attention in the past few decades.
Numerous techniques have been proposed to achieve high-
accuracy localization. GPS (Global Positioning System) is the
most common technology, which provides accurate location in
particular for outdoor environments, however, it suffers from
signal blocking and the multipath effect. These effects lead
to significant reduction in location accuracy and thus reduces
the quality of the localization process. This is the main reason
why other alternative sensor measuring techniques have been
studied in order to overcome these location accuracy problems.

A magnetic and inertial measurement unit (MIMU) consists
of a 3-axis MEMS gyroscope, accelerometer and magne-
tometer. MIMUs are widely used in many applications of
attitude determination such as human motion tracking, un-
manned aerial vehicle (UAV), mobile navigation, etc. [1]. The
gyroscope measures the angular rate of a moving object, the
accelerometer measures the acceleration of a certain object,
and the magnetometer measures the magnetic field. However,
low-cost sensors have inherent drawbacks [2], [3], such as
nonlinearity, random walk, temperature drift, etc. In order to
obtain a reliable attitude solution, MIMU sensor measurements
have to be fused together using optimal sensor fusion algo-
rithms [4].

The problem of attitude estimation is a well-known problem
and has been extensively studied, particularly for devices
whose motion is well-characterized. A survey of attitude esti-

mation techniques for spacecrafts is given in [5]. Other attitude
estimation techniques for pedestrian dead reckoning based on
smartphone sensors is relatively new. However, the aim of
all these attitude estimation systems is that the measurements
obtained from a gyroscope, accelerometer, and magnetometer
have to be combined. The different methods either use classical
filtering methods such as Kalman filters (KFs) [6], extended
Kalman filters (EKFs) [7], complementary filters [8], [9], [10],
or observers [11].

In this paper, we have chosen to investigate the Mahony,
the Madgwick, and the weighted filter due to their popularity.
However, one of the shortcomings of all algorithms is that each
has a control parameter that needs to be determined before
applying the algorithms. Only an optimized control parameter
achieves the best orientation information. Thus, an optimiza-
tion technique referred to as Particle Swarm Optimization
(PSO) is used to determine the best control parameters of
the Mahony, Madgwick, and the weighted filter. Simulation
experiments are run in order to investigate the influence the
control parameter has on each algorithm.

II. BACKGROUND TO MAGNETIC AND INERTIAL
MEASUREMENT UNIT (MIMU)

This section introduces the background of attitude estima-
tion by first describing the attitude representation followed by
the description of the sensors and their different types of noise.

A. Attitude Representation

With regards to the attitude representation, there are two dif-
ferent frames involved. One frame corresponds to the x, y, and
z-axis of the object/device the MIMU is mounted on, referred
to as OF (OFx, OFy, OFz), and the second frame represents
the Earth frame, referred to as EF (EFx, EFy, EFz). In order
for the tracking of objects to work, these two frames need to
be aligned.

The attitude can be expressed by three different representa-
tions [12]. These are Euler angles (roll, pitch, yaw - see Figure
1), rotation matrix, or quaternion. A unit-norm quaternion,
which essentially defines the rotation between EF and OF
is defined as [13]:



q = SEq =

[
q0−→q

]
= [q0 q1 q2 q3]

T ∈ <4 (1)

where q0 and −→q are the scalar and the vector portions of the
quaternion, respectively.

The representation of Euler angles is comprised of three
rotations [14]:
• a rotation ϕ around the x-axis (roll angle)
• a rotation θ around the y-axis (pitch angle)
• a rotation ψ around the z-axis (yaw angle)
The rotation matrix is a 3×3 matrix that represent the three

unit vectors yielding 9 parameters used for attitude estimation.
Each of the three attitude representations has their ad-

vantages and disadvantages. For example, the Euler angle
representation is subject to the gimbal-lock problem [14],
and the rotation matrix contains 9 values that need to be
determined, and quaternions are less intuitive to read and
interpret. However, the quaternion representation avoids the
singularity problem that is given by the Euler angles and in
addition quaternions involve simple computations and thus can
be operated on a large number of applications.

Fig. 1. Example of Roll, Pitch and Yaw [15]

B. MIMU Sensor

The Magnetic and Inertial Measurement Unit (MIMU)
is composed of MEMS (Micro-Electro-Mechanical Systems)
sensors that consists of a 3-axis accelerometer, a 3-axis gyro-
scope, and a 3-axis magnetometer. The sensor outputs of these
low-cost sensors are not very good, meaning that they suffer
from several problems such as noise, bias, scale factor, axis
misalignment, axis non-orthogonality and local temperature
[16].

1) Gyroscope: The gyroscope measures the angular ve-
locity of the tracking object in rad

s and is represented by:
[swx

swy
swz

]T . The gyroscope measurements suffer from:
• angular random walk
• bias instability
• rate random walk
The continuous time model for a gyroscope can be ex-

pressed such as:

sw = swr + swb
+ swn (2)

where sw is the angular rate measured by the gyroscope, swr

is the true angular rate, swb
is the gyroscope bias that models

its derivative by a random walk noise, and swn is the white
noise of the gyroscope.

The gyroscope measurements are not enough for attitude
estimation and thus additional sensors such as accelerometers
and magnetometer can compensate this drift. The accelerom-
eter corrects the pitch and roll angles, and the magnetometer
improves the yaw angle.

2) Accelerometer: The accelerometer measures the sum of
the gravity and external acceleration of the tracking object in
m
s2 . The acceleration is given as sa = [sax say saz ]

T . As
for the accelerometer measurements, the three main types of
noise are:

• velocity random walk
• bias instability
• correlated noise

The continuous time model of the accelerometer can be
summarized as:

sa = sar
+ sab

+ san
(3)

where sa is the sum of the gravity and external acceleration of
the tracking object, sar

is the sum of the gravity and external
acceleration, sab

is the accelerometer bias that models its
derivative by a Gauss-Markov noise, san is the accelerometer
white noise.

3) Magnetometer: The magnetometer measures the mag-
netic field of the tracking object in µT , and is represented
as sm = [smx

smy
smz

]T . The Earth’s magnetic field is
modeled by a dipole and follows the basic laws of magnetic
fields. At any location, the Earth’s magnetic field can be
represented by a three-dimensional vector. Please refer to [17]
for more information.

The three types of noise of the magnetometer are:

• angle random walk
• bias instability
• correlated noise

The continuous time model of the magnetometer is repre-
sented as:

sm = smr
+ smb

+ smn
(4)

where sm is the magnetic field measured by the magnetometer,
smr

is the true magnetic field, smb
is the bias of the mag-

netometer where its derivate is modeled by a Gauss-Markov
noise, and smn is the white noise.

The magnetometer does not only measure the Earth’s mag-
netic field, it is also influenced by magnetic disturbances
caused by ferromagnetic objects in the environment.

III. ATTITUDE ESTIMATION ALGORITHMS

The overall design of attitude estimation filters are described
below. The Mahony filter [18], the Madgwick Filter [19], and
the weighted filter [20] descriptions are provided.



A. Filter Design

The two algorithms are described using common notations
used for quaternion and sensor readings. The estimated vector
v is described by v̂ = [v̂x v̂y v̂z]

T , the quaternion and
angular rate errors are given by qe, we, and the time difference
between 2 epochs is 4t.

The two filter algorithms use two reference vectors Ea and
Em in order to estimate q. In a noise-free environment, the
relation between these two reference vectors are given as:

saq
= q−1 ⊗ Eaq

⊗ q (5)

where ⊗ is the quaternion multiplication [13]. saq is the
quaternion form of sa, which can be written as Saq

=
[0 sax

say
saz

]T . Eaq
is the quaternion form of Ea.

For the static case it is Ea = [0 0 g]T where g is the
acceleration due to gravity (g ≈ 9.8m

s2 ).
In a perfect environment, one that is noise-free as well as

there is no magnetic deviation, the relation between Em and
sm is the following:

smq = q−1 ⊗ Emq ⊗ q (6)

where smq
is the quaternion form of sm, which can be written

as smq
= [0 smx

smy
Smz

]T . Emq
is the quaternion

form of Em. If there are no magnetic deviations, Em can
be calculated using [21].

The kinematic equation of a rigid body is defined by
angular velocity measurements from a gyroscope to describe
the variations of the attitude in terms of quaternions as such:

q̇ =
1

2
q ⊗ swq (7)

where swq
is the quaternion of sw.

B. Mahony Filter

Algorithm 1 displays the equations involved for the Ma-
hony filter. Please note that ki and kp are the integral and
proportional adjustable gains (see Equation 2). The algorithm
computes the error by cross multiplying the measured and the
estimated vectors, the acceleration and magnetic field, and then
this error allows to correct the gyroscope bias.

Algorithm 1 Mahony Filter [18]

sâq,t
= q̂−1t−1 ⊗ Eaq,t

⊗ q̂t−1
sm̂q,t

= q̂−1t−1 ⊗ Emq,t
⊗ q̂t−1

swmes,t = [sat × sât ] + [smt × sm̂t ]
s ˙̂wb,t

= −kiswmes,t

sŵr,q,t
= swq,t

− [0 sŵb,t
] + [0 kpswmes,t

]

˙̂q = 1
2 q̂t−1 ⊗ sŵr,q,t

Figure 2 shows the block diagram of the Mahony filter. An
orientation error is obtained on the basis of the accelerometer
and magnetometer measurements after the body orientation
is computed at the previous step of the algorithm. Then, the

measured angular velocity is corrected using a Proportional-
Integral (PI) compensator. Afterwards, the quaternion prop-
agation is integrated in order to obtain an estimate of the
orientation after the quaternion normalization is completed.

C. Madgwick Filter

The algorithm of the Madgwick filter is shown in Algorithm
2. Madgwick is a gradient descent based algorithm where
the quaternion error from the gradient descent algorithm
provides also a gyroscope drift compensation. In the algorithm,
Jt is the Jacobian Matrix of Ft, β is the divergence rate
of qt representing the magnitude of a quaternion derivative
corresponding to the gyroscope measurement error, and ζ is
the integral gain.

Algorithm 2 Madgwick Filter [19]

Eĥq,t
= q̂t−1 ⊗ smq,t

⊗ q̂−1t−1

Em̂q,t = [0 0
√
Eĥ2

x,t
+ Eĥ2

y,t
Eĥz,t

]T

Ft =

[
q̂−1t−1 ⊗ Eaq,t ⊗ q̂t−1 − saq,t

q̂−1t−1 ⊗ Emq,t
⊗ q̂t−1 − smq,t

]
q̂e,t = JT

t Ft

sŵe,t = 2q̂t−1 ⊗ q̂e,t
s ˙̂wb,t

= swe,t

sŵt = swt − ζswb,t

˙̂qt =
1
2 q̂t−1 ⊗ sŵq,t

− β q̂e,t
||q̂e,t||

Figure 3 shows the block diagram of the Madgwick filter.
Two main process are used to compute the orientation of
the rigid body. First, a correction algorithm is used to align
the gyroscope measurements depending on the parameter. To
minimize the effects that are due to the bias and the drift
error, both are used to compute the body orientation via
the quaternion propagation beginning from the orientation
estimated at the previous step. Then, both the accelerometer
and magnetometer measurements are fused together using a
adjustable parameter, β, via the gradient descent algorithm as
described in [14]. The output of the gradient descent algorithm
is then used to correct the orientation estimated by considering
the gyroscope measurements only.

D. Weighted Filter

The weighted filter approach consists of two components
that are fused together as a weighted approach. The first part
estimates the relative orientation obtained by integrating the
gyroscope angular rate reading from an initial orientation [20]:

s−wq,t
= s+wq,t−1

⊗ δswq,t
(8)

where s−wq,t
is the quaternion orientation given by direct

gyroscopic integration at sample time t, and s+wq,t−1
represents

a previous initial or fused estimation. The term δswq,t
is the

micro rotation given at the tth sample interval measured by



Fig. 2. Block diagram of Mahony Filter [16]

Fig. 3. Block diagram of Madgwick Filter [16]

the 3-axis gyroscope’s angular rate sw in radians per second.
The term δswq,t is given by:

δswq,t
= [cos( |sw|dt2 ), sin( |sw|dt2 )

swq,1

|sw| ,

sin( |sw|dt2 )
swq,2

|sw| , sin(
|sw|dt

2 )
swq,3

|sw| ]
(9)

where |sw| is the norm of the gyroscope readings, and swq,1
,

swq,2
and swq,3

are the three angular rates measured at time t.
The second component contributes the absolute orientation

from the accelerometer and the magnetometer (sqa/m,t
). As

the gravity vector is known in magnitude and orientation, it
is used to derive the absolute pitch and roll of the MIMU.
The other euler angle (yaw) is derived by the known Earth
magnetic vector, when projecting the magnetometer readings
on a leveled plane using an electronic compass algorithm.
These absolute pitch, roll and yaw angles (sqa/m,t

) are noisy
and subject to many interferences (sudden movements and
magnetic perturbations).

Both components (s−wq,t
and sqa/m,t

) provide complemen-
tary orientation estimates and thus are fused together (s+wq,t

)
in order to benefit from each source of information as given
in Equation 10.

s+wq,t
= γs−wq,t

+ (1− γ)sqa/m,t
(10)

The expression contains the fusion of the gyro-based estima-
tion with the absolute accelerometer/magnetometer drift-free
correction by means of a time integration constant that is in-
cluded in the γ term. Thus, the γ value provides the weighting
between the gyroscope and the accelerometer/magnetometer in
the equation.

IV. EXPERIMENTS

In this section, the optimization tasks are described followed
by an introduction of the optimization approach (particle
swarm optimization), afterwards the sensor data description
used for the experiments is provided, and then the results of
the simulation experiments are outlined and discussed.

A. Optimization Approach: Particle Swarm Optimization

The optimization method referred to as Particle Swarm
Optimization (PSO) is part of a group called swarm intelli-
gence methods. PSO is a population-based stochastic search
technique [22]. The main idea behind PSO is the continuous
search of the population (swarm) for better solutions whereby
each particle participates in the process. The algorithm starts
with the initialization of a population of random solutions.
Each particle is assigned a random velocity that determines
the direction that the particle will search for, and each particle
keeps track of the coordinates that are associated with its
solution, which is calculated based on the fitness function.



During every iteration all particles move based on the follow-
ing equations:

x(i)(n+ 1) = x(i)(n) + v(i)(n+ 1),
n = 0, 1, 2, . . . , N − 1

(11)

where x(i) is the position of particle i, n is the iteration
number with n = 0 referring to the initialization, N is the
total number of iterations, and v(i) is the velocity of particle
i, i = 1, 2, . . . , np, where np is the number of particles.
Classical PSO uses the following iteration to update the
particle velocities:

v(i)(n+ 1) = v(i)(n) + 2r
(i)
1 (n)[x

(i)
p (n)− x(i)(n)]

+2r
(i)
2 (n)[xg(n)− x(i)(n)],

n = 0, 1, 2, . . . , N − 1

(12)

where xp is the personal best position, and xg is the global
best position. Both r

(i)
1 and r

(i)
2 are vectors with components

having random values uniformly distributed between 0 and 1.
The notation r(i)(n) denotes a new random vector generated
for every particle i and every iteration n.

B. PSO-Optimized Parameter Optimization

The PSO algorithm is applied to the Mahony, Madgwick,
and weighted filter. One control parameter (optimization con-
stant) each is to be optimized for each filter. The optimization
constant for the Mahony filter is the ki and kp ratio, whereas
the optimization constant for the Madgwick filter is β. As
for the weighted filter, γ needs to be optimized to achieve the
best orientation results. Thus, the steps of the optimization are
explained using the term ‘optimization constant’ referring to
each filter algorithm. First, the problem (optimization constant)
needs to be encoded using a particle representation, and
a fitness equation needs to be defined (in our case it is
the filter calculation for Mahony, Madgwick, weighted filter,
respectively). The inertial weight w as well as the acceler-
ation constants C1 and C2 need to be assigned (w = 1.4,
C1 = C2 = 2). The overall flow of the algorithm is as follows:
first, a randomly generated swarm is initialized, then the fitness
of each particle (solution) is evaluated, afterwards the two PSO
equations (Equations 11 and 12) are executed and the personal
best and global best values are being kept track of and the next
iteration begins. The algorithm terminates once the maximum
number of iterations has been reached.

C. Data Description

The data used is foot mounted MIMU measurement
data [23] that is freely available. It contains sensor data of
a straight trajectory of 1, 000 steps based on a human step
pattern characteristics measured by a motion capture system.
For our experiments, we have only used partial data of the
data set. The information from the MIMU is the acceleration,
turn rates from the gyroscope and the magnetic field. The
data set includes the orientation (Euler and DCM) ground
truth values. The units are in meters, seconds and radians, a
sampling frequency of 100 Hz was used, and gravity is 9.8m

s2 .

As the dataset with orientation ground truth is noiseless,
we have added a typical real noise content to the dataset. This
noise was generated from a very common MEMS MIMU,
XSense MTi unit, by keeping it still during several hours. So
different noise windows can be used in order to get different
bias conditions and instabilities. The noise patterns have the
following features:
• Accelerometer: 0.012m

s2 standard deviation random noise
and a random constant with a Gaussian distribution and
a standard deviation of 0.04m

s2 for the bias.
• Gyroscope: 0.0087 rad

s standard deviation random noise
and a random constant with a Gaussian distribution and
a standard deviation of 0.015 rad

s for the bias.
XSense MIMU are commonly used in motion sensing ap-
plications, and are seen as the gold standard for scientific
research [24]-[26].

Figure 4 shows the sensor data obtained by the gyroscope,
accelerometer, and magnetometer. The cyclic steps of the
walking motion can be observed.

D. Simulation Experiments

Different configurations of the PSO algorithm were run, but
the one that resulted in the best run is the following:
• Size of a swarm = 30
• w = 1.4
• C1 = 2
• C2 = 2
• Number of iterations = 30

E. Results

An example of the performance plot of the optimization
process for the weighted filter, whereby γ is optimized, is
shown in Figure 5. Both, the best RMSE (Root Mean Square
Error) as well as the average RMSE of the PSO swarm is
shown. As can be seen, the RMSE value of the best particle
converges to a value of 2.621.

Table I lists the best optimization values for each filter
algorithm. The following figures and table show the results
based on the best optimization values obtained (given in Table
I).

TABLE I
BEST OPTIMIZATION VALUE OF ALL THREE FILTERS

Mahony (ki / kp) Madgwick (β) Weighted (γ)

best 0.0221 0.0588 0.9885
worst 0.1922 0.1059 1.0

Figure 6 shows the Euler estimation correctness of Mahony,
Madgwick and the weighted filter, respectively. The figures
show the estimated values and the ground truth values for
roll, pitch, and yaw, respectively. However, since it is difficult
to judge which filter algorithm is the best, the RMSE values
are usually more meaningful.

Table II lists the RMSE values of roll, pitch, yaw and norm
results for all filters. The results reveal that the RMSE values



Fig. 4. Sensor data of gyroscope, accelerometer, magnetometer

Fig. 5. Comparison of Performance plot of Weighted Filter

of the Mahony and Madgwick filter are comparably good
with Madgwick slightly outperforming the Mahony filter. The
weighted filter has the highest norm RMSE value of 4.7759.

TABLE II
RMSE VALUES OF ROLL, PITCH, YAW AND NORM RESULTS FOR ALL

FILTERS

roll pitch yaw norm

Mahony 0.1333 0.6329 0.0109 0.6469
Madgwick 0.1440 0.6241 0.0053 0.6405
Weighted 2.1354 3.5662 2.3520 4.7759

Table III lists the norm RMSE improvement when the best
optimization value, ki / kp, β, and γ is used compared to
the worst for Mahony, Madgwick, and the weighted filter,
respectively. As can be seen from the values, the best results
are achieved for the weighted filter with an improvement of
28.5% whereas the Mahony and Madgwick filter only benefit
slightly from the optimization of their respective optimization
constants.

TABLE III
NORM RMSE IMPROVEMENT WHEN BEST OPTIMIZATION VALUE IS USED

worst best improvement [%]

Mahony 0.6598 0.6469 1.0199
Madgwick 0.657 0.6405 1.0257
Weighted 136.116 4.7759 28.5006

V. CONCLUSION

Past research work has developed different fusion or filter
algorithms of which we chose the Mahony, the Madgwick,
and the weighted filter to be used for our investigation. One
of the shortcomings of all these filter algorithms is that there
is a control parameter involved in each of them, which needs
to be determined before the algorithm is applied. Only a filter
algorithm with an optimized control parameter achieves the
best orientation information. Thus, a Particle Swarm Optimiza-
tion (PSO) algorithm was used to identify the best control
parameter of each filter algorithm.

The simulation experiments were run with the PSO algo-
rithm optimizing the control parameter of each filter algorithm,
and once the best parameter was obtained, the corresponding



(a) Mahony (b) Madgwick

(c) Weighted Filter

Fig. 6. Comparison of Euler estimation correctness of Mahony, Madgwick, and Weighted Filter

filter was run in order to acquire the orientation information
in the form of RMSE values for roll, pitch, yaw, and the
norm as well as the Euler estimation correctness. The results
revealed that the PSO optimization was most effective on the
weighted filter approach. Comparing the RMSE norm values
using the worst or best γ value resulted in an improvement
of 28.5%. The norm RMSE improvements for the Mahony
and Madgwick filter however were more moderate, thus, not
having a big impact on the orientation information. Overall,
the Mahony and Madgwick filter proved to be the best choices
in terms of orientation information with norm RMSE values
of 0.6469 and 0.6405, respectively.

Future work will investigate the Extended Kalman Filter
applied to the data set. In addition, related work has also
applied the Unscented Kalman filter, which shows promise
in particular for this area of research.
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