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Abstract—Nowadays, cybersecurity threats have become a wor-
risome issue that need to be addressed in all of the world. Almost
all people have smart devices that are connected worldwide
and many are using social media platforms, and thus, most
of their personal information is used and shared. An example
of cybersecurity threats are malicious URLs and malware,
which are very likely to impact general users. For the research
community, detecting new types of attacks is a challenge. Most of
the past research studies focused on surveying malicious attack
detection. The classification models detect the kind of attacks
by using machine learning approaches. Interpreting machine
learning models is also an important issue. Tree, Deep, and
Kernel of SHAP (Shapley Additive Explanations) are well-known
techniques, which achieve efficient performance in interpreting
the results. In this paper, two cyber data sets are investigated,
both being five-class data sets, for which the Random Forest
Classifier, XGBoost Classification, and the Keras Sequential
algorithms are applied. The obtained results confirm that ap-
plying the classifiers to generate the models are good choices
to detect cybersecurity threats. The efficacy of these models’
performance was evaluated by measuring the precision, recall,
F1-score, accuracy, and confusion matrix. In addition, three
SHAP methods are used to explain the output of the resulting
machine learning models for the five-class data sets.

Index Terms—SHAP, XGBoost, RFC, Sequential, Explain,
TreeShap, KernelShap, DeepShap

I. INTRODUCTION

The web has recorded significant developments, with im-
pressive communication features being provided. Despite the
exponential growth, the online realm faces multiple challenges,
including cyber threats. Already, numerous cases of financial
fraud are reported constantly. Under normal circumstances, the
hackers steal personal information, which is used to execute
crime with the data being obtained from social media sites
[1]. With technology being dynamic, complex penetration
strategies are being developed, with the criminals always
experimenting with newer schemes. Consequently, information
technology professionals and users must be vigilant to thwart
hackers’ unrelenting efforts, which is time-consuming and
resource-intensive. Hence, robust protective measures should
be developed to protect online users against malicious ac-
tivities on the internet [2]. Technology is fluid, which calls
for constant defensive approaches to safeguard data within an
organization’s or individual’s control.

Predicting the risk of attack occurrences is a significant chal-
lenge for researchers. The development of a reliable and secure
analysis system is vital to protecting digital assets. Therefore,
prevention approaches have proved useful in minimizing cyber
crimes’ threats, such as automated scans [3]. Mamun et al. [4]
suggest methods to detect and classify malicious URLs based
on their attack type through lexical analysis. For different
kinds of malware threats, the researchers’ efforts focus on sur-
veying malware, for example, the Android malware variant [5].
Given the Android environment’s uncontrolled development,
a mandatory safety requirement aims to prevent infiltration
by malicious codes. However, without a thorough understand-
ing of malware infection approaches, it is challenging to
implement an effective mitigation solution. Without proper
structures, the prevention of online attacks is challenging,
thus, compromising the security of information with online
databases. This paper investigates two standard data sets of
cyber-attacks: malicious URLs and Android malware. An
explainable artificial intelligence (XAI) is used through the
Shapley Additive Explanations (SHAP). Thus, this research
contributes towards applying three methods of SHAP which
are TreeShap, KernelShap, and DeepShap to explain three
different models of Machine Learning (ML) classification.
The ML algorithms used are Random Forest Classifier (RFC),
XGBoost Classification, and the Keras Sequential algorithm.
ML models are built to predict and estimate the expected
performance on the test sets of both data sets used. The
systematic analysis allows researchers to identify dominant
patterns in system infiltration.

Additionally, forecast interpretation is imperative to dis-
tinguish model qualities and shortcomings. The analysis is
achieved by analyzing the contribution of the input to decipher
the expectations iteratively. Moreover, the approach allows
the extrication of unused data from complex information
intelligence captured by ML models. With the three methods
of SHAP, sufficient explanation regarding the outputs of the
ML models’ decisions for the five classes for each data set
is provided. The five classes express the different attacks,
with the features describing the causes affecting the outcomes.
However, more details are presented in the data description
section.

The paper is organized into five sections following the



introduction. The related work is discussed in Section II.
In Section III, the background is detailed, including the
algorithms used for both classifications applying the SHAP
methods. The experiments and results are illustrated in Section
IV, where the results are obtained from various models of the
ML algorithms. In addition, the SHAP explanation results are
provided and discussed. Section V summarizes the paper and
presents the paper’s findings.

II. RELATED WORK

Most cybersecurity research focuses on describing the risks,
crime incidences, and their overall effects on individuals and
companies. Nurse in [2] presents an approach to cyber crimes
and community challenges, which addresses the inherent risks
common on digital platforms. Cyber criminals’ styles and
methods are mentioned, including malware, account hacking,
and malicious URLs, among many other techniques. In [6], the
use of ML to detect cyber-attacks in real-time was investigated
where the model was built using Random Forest and Decision
Tree achieving the best performance.

In [7], the theory of XAI using an Ontology Graph (OG)
and transfer learning was used to simulate the human brain
to explain the outputs. The researchers established that the
main problem was the explainable part of artificial intelligence,
likely to be used in future development. Thus, a reliable anal-
ysis provides the critical role needed to interpret the outputs,
which are essential in making correct decisions. Additionally,
the approach provided validity and reliability to the results.
In [8], Fernando et al. used two methods of XAI DeepSHAP
and LIME to explain the output of Neural Retrieval Models
(NRMs) for the text based adhoc search where DeepSHAP
was more efficient since it uses more precise terms, whereas
LIME focused only on eminent terms.

Research presented by Ibor et al. [9] examined the utiliza-
tion of unsupervised measurable and administered learning
strategies to identify threats by mapping hyper-alerts within
class label risks. According to [10], Lakshmanaprabu et al.
used RFC to classify the e-health data, and the precision of
the proposed technique was 94.2%. In [11], RFC was used to
built predictive models with the system producing very good
results whereby the Receiver Operating Characteristics (ROC)
curve was above 90%.

Furthermore, Chen et al. [12] describe XGBoost as a model
that incrementally constructs new frameworks, focusing on the
errors in the previous system’s classification. In the method,
the model can unravel real-world scale issues with a minimum
number of resources.

Research presented by Ho [13] indicated that KernelSHAP
was utilized to interpret expectations of RNN models and
the average time of computation was less than ten minutes.
Consequently, the explanations analyzed at different scales
(people, cohorts, and all patients) were consistent with clinical
expectations.

In [14], the authors used Keras Sequential to build their
model for network intrusion detection by classifying the data
set into two classes (normal and attack). Several explanation

methods were utilized that were SHAP, LIME, Contrastive Ex-
planations Method (CEM), ProtoDash and Boolean Decision
Rules via Column Generation (BRCG). The accuracy of their
model was 82.4%.

In [15], researchers used the Deep Feed Forward (DFF)
and Random Forest (RF) models to classify their data set.
In addition, they utilized the SHAP technique to explain the
importance and influence of the data set features.

Mahbooba et al. [16] addressed Explainable Artificial Intel-
ligence (XAI) to enhance trust management in Intrusion De-
tection Systems by using the Decision Tree (DT) model. They
claimed that DT achieves a marginal improvement compared
to Logistic Regression and Support Vector Machines.

The study in [17] proposed a method to detect valuable
alerts of cyber security threats using SHAP to identify the
important features selected based on the SHAP plots. Random
Forest (RF) and XGBoost were used to test the Malware Data
set where RF’s accuracy was 98%, and 97% for XGBoost.

In this paper, three methods of SHAP (TreeSHAP, Ker-
nelSHAP, and DeepSHAP) are employed to explain the pre-
dictions of classifiers applied that are RFC, XGBoost, and the
Sequential model. The strategies are useful in mapping alerts
of threats to web and social media. Additionally, the accuracy
and performance of models are investigated in order to identify
the best performing classifier and explainer tool for both data
sets.

III. BACKGROUND

In this section, the models of ML and explanations of the
SHAP method applied to the models are described. First, RFC,
XGBOOST, and SEQUENTIAL ML models are described.
Then, the SHAP methods are explained, which are applied to
the results of the ML models that are run on two cybersecurity
data sets.

A. Random Forest Classifier

Random Forest Classifier (RFC) is used with TreeShap
explanation, which is one of three ensemble methods that
play a main role for the interpretation of predictions [18].
In RFC three main parameters are used: The first criterion,
criterion=‘gini’, measures the quality of a split or the Gini
index that uses Equation (1) to decide how nodes on a decision
tree divide. It uses the class and probability to determine the
Gini value of each branch of a node, determining which of
the branches is more likely to occur. Here, Pi represents the
relative frequency of the class observed in the data set, and
C represents the number of classes. The criterion=‘entropy’ is
another option to determine how nodes branch in a decision
tree based on the probability as shown in Equation (2). For
selecting the best features, we chose Gini because its range
is between 0 to 0.5, while Entropy is between 0 to 1 [11].
Other parameters are “max depth”, which is for depth of the



tree, and “n estimators” is the number of trees in the forest
(integer).

Gini = 1−
C∑

i=1

(Pi)
2 (1)

Entropy =

C∑
i=1

−Pi ∗ log2(Pi) (2)

RFC is the implementation that trains a model for a data set
where random samples are selected from the data set. Then,
a decision tree is created based on this selection. After that,
a prediction result is obtained from each decision tree created
and the most voted prediction result is the final prediction
result [19].

B. XGBoost Classification

XGBoost classification is used with KernelShap explana-
tion. XGBoost is an ensemble machine learning technique that
uses the gradient boosting framework for machine learning
prediction. XGBoost is well known for its fast execution and
scalability [20]. XGBoost is derived from extreme gradient
boosting, which is a mix of gradient boosting and XGBoost. It
uses the second-order gradients and advanced regularization to
obtain more accurate approximations. XGBoost is an example
of boosting where the values of initial predictions and errors
are calculated. Then, a model is trained with independent
variables and residual errors to get the predictions [12]. Three
parameters are used:

1) binary logistic: logistic regression is used for binary
classification;

2) output probability is max depth =10 is the maximum
depth of a tree;

3) n estimators=800 is the number of boosting rounds [20].

The model is trained and evaluated resulting in the predic-
tions.

C. Sequential Model

A sequential model is used as a classifier consisting of a
linear stack of layers. Each layer has an input tensor and output
tensor.

In the first layer, we use the ReLU (Rectified linear unit)
activation function [21]. ReLU is defined by Equation (3). In
the final layer, we use the softmax activation to generalize
the first layer function [21]. Softmax is defined by Equation
(4). After creating the network architecture, the loss function,
optimizer, and metrics for prediction are defined.

F (x) = (0,x) (3)

Softmax(xj) =
e(xi)∑
i e

(xi)
(4)

D. Introduction to SHAP

Shapley values were leveraged to represent SHapley Ad-
ditive exPlanation (SHAP) for the feature influence scoring.
Shapley values consider all possible predictions for an instance
using all possible combinations of inputs. Since this is an
exhaustive approach, SHAP provides properties like consis-
tency and local accuracy [22]. The Shapley value is defined
via a value (Equation (5)) where s⊆F represents all feature
subsets, F is the set of all features, f S∪i is trained with
that feature present, f S is trained with the feature withheld.
Then, predictions from the two models are compared based on
the current input [f S∪i(x S∪i) − f S(x S)], where (x S)
represents the values of the input features in set S [23].

∅ i =
∑

S⊆F{i}
|S|!(|F| − |S| − 1)!

|F|! [f S∪i(x S∪i) − f S(x S)] (5)

SHAP takes three steps [24] which are: (1) computation
of Shapley value explanations, (2) capture feature interactions
by extending local explanations, and (3) interpreting global
model structure based on many local explanations by defining
desirable properties.

E. TreeExplainer of SHAP

The TreeExplainer is applied with the ML Random Forest
Classifier (RFC) model to enable tractable computation of the
optimal local explanations by defining desirable properties as
defined by SHAP. The decomposition of the decision path
into one component per feature explains the predictions of
a decision tree. Thus, the decision is tracked by traversing the
tree and explaining a prediction y by the additive contributions
at each decision node as shown in Equation (6).

y = bias+

M∑
m=1

feature contribution{m,x} (6)

where bias is the contribution of root node and feature contri-
bution, {m,x} is the contribution of feature m in predicting
the outcome corresponding to an input x [25].

F. KernelExplainer of SHAP

The KernelExplainer is applied to the ML XGBOOST
classifier model. It performs a local regression by taking
the prediction method and the data to perform the SHAP
values to compute the importance values of each feature as
Shapley values. Two parameters are used in KernelExplainer:
(1) predict proba() is used to retrieve the probabilities of
each target class; (2) link = Logit is a function to make the
feature importance values have log-odds units [26]. The ap-
proximation in Equation (7) is used to evaluate the conditional
expectation [27].

fT,KernelSHAP (x) ≈
1

K

∑
k

f(xT , x
k
T ) (7)

where xk
T , k=1,. . . ,K are samples from xT .



G. DeepExplainer of SHAP

The DeepExplainer is applied with the ML Sequential
model. It is an enhanced method of the DeepLIFT algorithm
(Deep SHAP), which approximates the conditional expecta-
tions of SHAP values using a selection of background samples
[23]. This is done by integrating over many background sam-
ples. Deep estimates approximate SHAP values by calculating
the difference between the expected model output on the
passed background samples and the current model outputs as
shown in Equation (8).

Difference = f(x) − Exp(f(x)) (8)

where f(x) is current outputs, and Exp(f(x)) is the
expected output.

IV. EXPERIMENTS AND RESULTS

In this section, the two data sets are used and described
followed by the explanation of the outputs of the different
SHAP explainer algorithm that are used based on the ML
models. Furthermore, the accuracy of the resulting models are
analyzed.

A. Data Set Description

Two data sets were taken from the Canadian institute for
Cybersecurity, which is called UNB [28]. The first data set is
called “URL data set (ISCX-URL2016)” and named malicious
URLs. It contains 36,707 records and 80 columns (79 features
and one outcome column (classes) for the five different attack
types of URLs which are Benign URLs, Spam URLs, Phishing
URLs, Malware URLs, and Defacement URLs. Features are
obfuscation techniques used as common method for masking
malicious URLs. More details regarding these features can be
found on the UNB site [28]. The features that were analyzed
and classified contributed to explain the five classes of Ma-
licious URLs. The second data set is called “CICMalDroid
2020” and is named Android Malware data set. It contains
11,598 APK files samples (records) and 470 (469 extracted
features (columns), and one column containing five categories
(classes) which are: Adware, Banking malware, SMS malware,
Riskware, and Benign). The features relate to system calls,
binders, and composite behaviors.

B. Results Obtained

The results obtained using three classifiers of ML models
were explained by using three versions of SHAP that are
TreeSHAP, KernelSHAP, and DeepSHAP. The experiments fo-
cused on explaining and detecting the obfuscation techniques
that influence each attack type of URLs and identify Android
malware by explaining and detecting the features of system
calls, binders, and composite behaviors that cause them. This
allows to present the results to the end user in a clear, simple,
and understandable way.

C. Results - TreeExplainer of SHAP

A bar graph is chosen for TreeExplainer of SHAP to explain
the RFC model. It is used to explain the features that influence
the classes in the data set. Feature importance is ranked in
descending order based on the effect the prediction has on
each class. Therefore, the main role of the Tree-Explainer is
to explain and interpret the impact each feature has on the
model output of the target class based on the test set for both
data sets.

1) Malicious URLs Data Set: Figure 1 shows the most
important features of the SHAP values that affect classes of the
attack type URLs. As shown, the colors represent the features
of the obfuscation techniques that are SHAP values. For
example, obfuscation technique called “domain token count”,
which is located in high level of this plot, resulted in classes
“Benign” and “Spam” URLs more than the remaining class
types. Conversely, in the low level of the plot the “fileName-
Len” affects class “Malware URLs” more than the other class
types of URLs. Also, the “urlLen” feature influenced the class
“Malware” more than the other classes. Thus, based on the
influence of the features, the class “Spam” in blue color was
identified most often.

Figure 1. Five-Class Tree-SHAP of Malicious URLs

2) Android Malware Data Set: Figure 2 displays SHAP
values that are used to identify the features that resulted in
malware for each of the classes shown in different colors. For
example, the “pread64” feature, which is located on top of
this plot influenced the class “SMS malware” more often than
the other classes, while the “getSubscriberld” feature, which
is located in the low level of this plot influenced the class
“Riskware” more than the other malware classes. This plot
shows the class “SMS malware” in blue color resulting in the
most often outcome.

D. Results - KernelExplainer of SHAP

For the following experiments, KernelExplainer of SHAP is
used to explain one class using the Dot graph for the XGBoost
classifier model. It shows the results as a graph showing the
combination between a scatter plot and density estimation by



Figure 2. Five-Class Tree-SHAP of Android Malware

Figure 3. Five-Class Kernel SHAP of Malicious URLs

letting dots pile up when they do not fit. The average feature
value at that position is represented with the colors where
the red dots represent mostly high feature values while blue
dots represent mostly low feature values in the data set based
on their location either left or right of the vertical axis. The
dot graph shows the positive and negative relationship of the
predictors with the target class as dots based on the training
data. Feature importance is ranked in descending order based
of the effect each feature has on the prediction of the class.

1) Malicious URLs Data Set: Figure 3 shows that feature
“domain token count” has a high and positive impact on
the class “Spam” rating. The large values of this feature
does increase the prediction of class “Spam”. The “high”
values are denoted in red color, and the “positive” impact is
shown on the horizontal axis. The horizontal location shows
that an impact of this value is associated with a higher or
lower prediction according to the scale. Similarly, we can see

Figure 4. Five-Class Kernel-SHAP of Android Malware

that “avgdomaintokenlen” is negatively correlated with class
“Spam”. Also, the large values of “Entropy DirectoryName”
clearly increases the prediction of class “Spam”, while it can
be seen that large values of “fileNamemeLen” decrease the
prediction of class “Spam”.

2) Android Malware Data Set: Figure 4 shows the values
of the “flock” feature having a high and positive effect on class
“SMS malware” indicated by the red color on the horizontal
axis, which increases the likelihood of class “SMS malware”.
On the other hand, large values of feature “pread64” decreases
the likelihood of class “SMS malware”. Also, the values of
“getSubscriberid” and “writev” increase the prediction of class
“SMS malware”. Conversely, the values of “sigprocmask” and
“getinstallerPackageName” decrease the prediction of class
“SMS malware”.

E. Results - DeepExplainer of SHAP

In the following section, DeepExplainer of SHAP is used
to explain one class using the Force plot for the Sequential
Classifier model. It shows how each feature contributes to
influence the model output from the base value prediction
(the average predicted outcome over the entire training set)
to the corresponding model output of the target class. The
plot is centered around the x axis by the explanation of an
expected feature, which impacts the target class. Features
influencing the prediction positively are shown in red, while
those influencing the prediction negatively are shown in blue.
Influencing the prediction to higher or lower values depends
on the output value (f(x)) compared to the base value. If the
output value is greater than the base value for the prediction,
then the features in the red color will push the prediction to
the right (higher) range or vice versa. Also, at the bottom of
the plot the largest effects of feature values are printed.



Figure 5. Five-Class Deep-Malicious URLs

Figure 6. Five-Class Deep-SHAP of Android Malware

1) Malicious URLs Data Set: Figure 5 shows the different
features and how each is contributing to influence the model
output class “Spam” from the base value. Since the output
value (f(x)) was 0.73, which is greater than the base value of
0.5647, the prediction shown in red color of features belonging
to class “Spam” are pushed to the right (higher values). For
example, “Querylength” has a positive impact on the class
“Spam”, which is seen in the red area and influences the
prediction of class “Spam” to the right. Conversely, the feature
“charcompvowels” shown in the blue area is negatively related
to class “Spam” where it pushes the prediction of class “Spam”
to the left (lower value). But the force to drive the prediction
to the right (higher value) is the largest because the feature
values that are in the red area are greater than the other feature
values that are in the blue area.

2) Android Malware Data Set: Figure 6 shows how the
each feature contributes to influence the model output for class
“SMS malware” away from the base value due to the output
value (f(x)) with a value of 0.72, which is greater than the base
value of 0.5881. The prediction in red color of features influ-
encing class “SMS malware” are pushed to the right (higher
value). For example, feature “FS ACCESS(READ) ” in the
red area is a force to drive the prediction of class “SMS
malware” to the right (higher value). Conversely, the feature
“FS ACCESS(CAREATE APPEND) ” in the blue area
pushes the prediction of class “SMS malware” to the left
(lower value). But the strong force to drive the prediction to the
right (higher value) is located in the red area since the feature
values in the red area are greater than the feature values that
are in the blue area.

F. ML Model Performance

The following section explains the confusion matrix for each
model, and presents the tables of the classification results of
the ML models as well as the ROC curve of each model
followed by a summary of the results of all ML models
applied.

1) Confusion Matrix: Figures 7 through 12 show the
confusion matrices of the five classes for all ML models for
both data sets.
• Confusion Matrices of Malicious URLs Data Set:
The confusion matrix in Figure 7 shows that 3,677 samples

were correctly classified for all five classes of the RFC

model applied to the Malicious URLs data set, with the
Spam class having the highest number with 1,091 correctly
classified samples. The Malware class classified 854 samples,
the Phishing class classified 781 samples, the Benign class
classified 508 samples, and the Defacement class classified
443 samples correctly. For each class there are also a few
misclassifications as shown in the matrix.

Figure 7. Confusion Matrix for RFC model of Malicious URLs

Figure 8 shows the Confusion Matrix of the XGBOOST
model applied to the Malicious URLs data set. It correctly
classified 3,722 samples in all five class categories of the Ma-
licious URLs data set. For example, the Spam class achieved
1,108 correct classifications whereas the Defacement class
is the one with the least number of correctly classified 449
samples correctly. Values in-between are the Malware class
with 868 samples, the Phishing class with 787 samples, and
the Benign class with 510 samples correctly classified.

The confusion matrix of the Sequential model applied
to the Malicious URLs data set is shown in Figure 9. It
shows the correct classification of 3,546 samples for all five
classes of the Malicious URLs data set with the following
correct classifications: Spam class 1,095 samples, the Malware
class 814 samples, the Phishing class 722 samples, the Benign
class 482 samples, and the Defacement class classifying 433
samples correctly.



Figure 8. Confusion Matrix for XGBOOST model of Malicious URLs

Figure 9. Confusion Matrix for Sequential model Malicious URLs

In summary, the XGBOOST model showed the best perfor-
mance since the number of correctly classified samples was
3,722, which is the highest among all ML models. Also, it
is observed that the Spam class achieved the highest numbers
of samples that were correctly classified comparing all ML
models applied to the Malicious URLs data set.

• Confusion Matrices of Android Malware Data Set:
In Figure 10, the confusion matrix shows the 2,183 samples

that were correctly classified for all five classes of the RFC
model applied to the Android Malware data set with
the highest number of classifications for the SMS malware
class (807 samples) followed by the Riskware class with 467
samples, the Bank malware class with 373 samples, and the
Benign class with 307 samples. The lowest number of samples
was for the Adware class with 229 samples.

The confusion matrix in Figure 11 shows the correct classi-
fication of 2,197 samples in the diagonal of all five classes
of the Android Malware data set using the XGBOOST

Figure 10. Confusion Matrix of RFC model of Android Malware

Figure 11. Confusion Matrix of XGBOOST model of Android Malware

Figure 12. Confusion Matrix of Sequential model of Android Malware



model. The figure shows that the SMS malware class classified
810 samples, the Riskware class classified 473 samples, the
Bank malware class classified 381 samples, the Benign class
classified 306 samples, and the Adware class classified 227
samples correctly.

In Figure 12, the confusion matrix shows that 1,986 samples
were correctly classified for all five classes of the Sequential
model applied to the Android Malware data set with 790
for the SMS malware class, 407 for the Riskware class, 351
for the banking malware class, 240 for the Benign class, and
198 for the Adware class.

It can be concluded that the best performance was when
using the XGBOOST model because it correctly classified
2,197 samples, which is the highest among all ML models
applied. Finally, it is seen that all ML models correctly
classified the highest numbers of Android Malware Data Set’s
samples to the SMS malware class.

2) ROC and Classification Tables of URLs Data Set:
Firstly, the ROC (Receiver Operating Characteristic) curve
is created by plotting the true positive rate (TPR) against
the false positive rate (FPR). It gives equal weight to the
classification of each label. Therefore, the five curves represent
the predictive quality of the five classes. Thus, in order to
choose the best ML model we examined the ROC curve and
accuracy rate of each class for each ML model.

Figure 13 shows the ROC curve for the XGBOOST ML
model applied to the Malicious URLs data set showing the
best performance among all models. Table I summarizes the
ROC of all ML models applied to the test set of the Malicious
URLs data set.

Secondly, Tables II through IV show the precision, recall,
f1-score, and support for the 5-Class data based on all ML
models that are applied to the Malicious URLs data set.

Figure 13. ROC Curve of 5-class to XGBOOST model of Malicious URLs

3) ROC and Classification Tables of Android Malware
Data Set: Firstly, based on the examination of the ROC
and accuracy rate of each class for each ML model, the
XGBOOST achieved the best performance among other ML
models. Figure 14 shows the ROC curve of the XGBOOST

Table I
ROC OF ML MODELS FOR MALICIOUS URLS

Sequential XGBOOST RFC
Benign 0.9873 0.9992 0.9988
Spam 0.9942 0.9999 0.9996
Phishing 0.9765 0.9979 0.9958
Malware 0.9928 0.9997 0.9996
Defacement 0.9896 0.9992 0.9988

Table II
RFC MODEL OF MALICIOUS URLS

Precision Recall f1-Score Support
Benign 0.96 0.97 0.96 526
Spam 0.99 0.98 0.98 1113
Phishing 0.92 0.95 0.94 821
Malware 0.99 0.98 0.98 875
Defacement 0.97 0.96 0.97 462
Accuracy 0.97 3797
Macro avg 0.97 0.97 0.97 3797
Weighted avg 0.97 0.97 0.97 3797

Table III
XGBOOST MODEL OF MALICIOUS URLS

Precision Recall f1-Score Support
Benign 0.97 0.97 0.97 526
Spam 0.99 1.00 0.99 1113
Phishing 0.96 0.96 0.96 821
Malware 0.99 0.99 0.99 875
Defacement 0.98 0.97 0.98 462
Accuracy 0.98 3797
Macro avg 0.98 0.98 0.98 3797
Weighted avg 0.98 0.98 0.98 3797

Table IV
SEQUENTIAL MODEL OF MALICIOUS URLS

Precision Recall f1-Score Support
Benign 0.94 0.92 0.93 526
Spam 0.96 0.98 0.97 1113
Phishing 0.86 0.88 0.87 821
Malware 0.98 0.93 0.95 875
Defacement 0.93 0.94 0.93 462
Accuracy 0.93 3797
Macro avg 0.93 0.93 0.93 3797
Weighted avg 0.93 0.93 0.93 3797

model and Table V the ROC of all ML models used to test
five classes of Android Malware data set.

Table V summarizes the ROC of all ML models applied to
the testing portion of the Android Malware data set.

Furthermore, Tables VI through VIII show the precision,
recall, f1-score, and support for the 5-Class data based on all
ML models that are applied to the Malicious URLs data set.

4) Summary of Results: Table IX shows the summary of
the experiments. It summarizes and provides a comparison
of both data sets. The data sets used are relatively large
data sets. The URLs data set is distinguished by containing
36,707 samples and 79 features while the Android Malware
data set is featured having 11,598 samples and 469 features.
Both data sets’ features were analyzed and classified to five
classes based on the test data set portion of both. Moreover,



Figure 14. ROC Curve of 5-Class to XGBOOST model of Android Malware

Table V
ROC OF ML MODELS FOR ANDROID MALWARE

Sequential XGBOOST RFC
Adware 0.8901 0.9952 0.9946
Banking malware 0.9068 0.9900 0.9890
SMS malware 0.9662 0.9993 0.9985
Riskware 0.8862 0.9916 0.9929
Benign 0.8661 0.9962 0.9943

Table VI
RFC MODEL OF ANDROID MALWARE

Precision Recall f1-Score Support
Adware 0.85 0.93 0.89 246
Banking malware 0.96 0.89 0.92 418
SMS malware 0.98 0.99 0.98 817
Riskware 0.94 0.91 0.92 511
Benign 0.90 0.94 0.92 328
Accuracy 0.94 2320
Macro avg 0.93 0.93 0.93 2320
Weighted avg 0.94 0.94 0.94 2320

Table VII
XGBOOST MODEL OF ANDROID MALWARE

Precision Recall f1-Score Support
Adware 0.86 0.92 0.89 246
Banking malware 0.94 0.91 0.92 418
SMS malware 0.99 0.99 0.99 817
Riskware 0.96 0.93 0.94 511
Benign 0.92 0.93 0.93 328
Accuracy 0.95 2320
Macro avg 0.93 0.94 0.93 2320
Weighted avg 0.95 0.95 0.95 2320

the accuracy of the resulting models was quite good for a 5-
Class model outcome. For example, in the RFC model applied
to the Malicious URLs data set, the accuracy was 97% while
for the Android Malware data set the accuracy was 94%. For
the XGBOOST model applied to the Malicious URLs data
set, the accuracy was 98% while for the Android Malware the
accuracy was 95%. For the Sequential model applied to the
Malicious URLs data set the accuracy was 92% while for the
Android Malware data set the accuracy was 86%. In summary,

Table VIII
SEQUENTIAL MODEL OF ANDROID MALWARE

Precision Recall f1-Score Support
Adware 0.70 0.80 0.75 246
Banking malware 0.82 0.84 0.83 418
SMS malware 0.92 0.97 0.94 817
Riskware 0.85 0.80 0.82 511
Benign 0.88 0.73 0.80 328
Accuracy 0.86 2320
Macro avg 0.83 0.83 0.83 2320
Weighted avg 0.86 0.86 0.86 2320

Table IX
SUMMARY OF COMPARISON LISTING BOTH DATA SETS

URLs Data Set Android Malware Data Set
Samples 36707 11598
Support 3797 2320
Features 79 469
Classes 5 5
RFC accuracy 97% 94%
XGBOOST accuracy 98% 95%
Sequential accuracy 92% 86%
Algorithm with most
correct classifications XGBOOST XGBOOST

the best performance was achieved by the XGBOOST ML
model among all ML models since it correctly classified the
highest number of samples for both data sets.

V. CONCLUSION

The research investigated two big cybersecurity data sets
(Malicious URLs, Android Malware), which were from the
UNB site. Both data sets consisted of five classes. RFC,
XGBOOST, and the Sequential algorithm were applied and
three methods of SHAP were used to explain the feature con-
tributions, which were TreeShap, KernelShap, and DeepShap.
In addition, the evaluation used accuracy, ROC, classification
tables, and confusion matrices.

The SHAP plots were analyzed in order to see which of
the features have the most influence on the built models. The
plots clearly show the different features and their effects or
contributions they make to each model for each class. Thus, the
Bar SHAP was successful to explain all classes and features
that impact them for both data sets showns in different colors.
The best result to determine the class “Spam” in the Malicious
URLs data set, and class “SMS malware” in the Android
Malware data set was based on the effects of the features.
This result was confirmed by the classification tables and
the confusion matrices of all ML models, while other SHAP
methods help to explain the effects of features on one class.

In terms of accuracy, the RFC model achieved 94.0% for the
Android Malware data set whereas the accuracy was 96.7%
for the Malicious URLs data set. In addition, the accuracy
was 98.0% for XGBOOST using the Malicious URLs data
set while the accuracy was 94.7% using the same model on
the Android Malware data set. Furthermore, the accuracy of
the sequential algorithm for the Malicious URLs data set was
93.3%, and for the Android Malware data set the accuracy was



85.6%. The explanations were been made using the SHAP
methods with high efficiency given the accuracy that was
achieved using the ML algorithms. In addition, examining
data points with low values turns out to be a good way of
discovering noisy and/or mislabelled data points.

Finally as for future work, understanding which data has
high value and which has a low value is important to improve
the explanation capability of the cybersecurity threats data
using SHAP methods. Thus, we suggest to use this information
to guide future data collection activities and improve the data
gathering in cybersecurity or any other domain.
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