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Abstract—Embedded systems are finding their way into almost
every aspects of our daily life from mp3 players and console
games to the mobile phones. Different Artificial Intelligence (AI)
based applications are commonly utilized in embedded systems
from which computer vision based approaches are included. The
demand for higher accuracy in computer vision applications is
associated with the increased complexity of convolutional neural
networks and the storage requirement for saving pre-trained
networks. Different factors can lead to the data corruption in
the storage units of the embedded systems, which can result
in drastic failures due to the propagation of the errors. Hence,
the development of software-based algorithms for the detection
and recovery of data corruption is crucial for improvement and
failure-prevention of embedded systems. This paper proposes
a new algorithm for the recovery of the data in the case of
single event upset (SEU) error. The association rule mining based
algorithm will be used to find the probability of the corruption
in each of the bits. The recovery algorithm was tested on four
different pre-trained ResNet (ResNet32 and ResNet110 at two
different accuracy levels each) and the best recovery rate of
66% was found in the most complex scenario, i.e., random bit
corruption. However, for the special cases of SEU errors, e.g.
error in the frequently repeated bits, the recovery rate was found
to be perfect with a value of 100%.

Index Terms—Single event upset, Silent data corruption, As-
sociation rule mining, Recovery algorithm

I. INTRODUCTION

Artificial intelligence (AI) applications are increasingly
growing in different fields including the ones used in our
every-day lives. Historically speaking, the attempts on the Al
side were focused on mimicking human behavior up to the
level where one cannot recognize the computer performance
from a human. However, most of the attempts in this area
shifted to the implementation of rational thinking instead.
Nowadays, Al plays role in robotics, speech recognition,
natural language processing (NLP), data driven modeling,
recommendation systems, and computer vision. Each of the
aforementioned categorical fields can be even sub-divided
further to list more specific applications which have found their
way into different technological and industrial applications.

Prediction systems which are commonly used in Al, are
mostly constructed by utilizing machine learning (ML) tech-
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niques. From one point of view, ML techniques can be
categorized into unsupervised and supervised learning. The
unsupervised ML algorithms are aimed at assigning instances
within a set of unlabeled data into different groups (clus-
ters). Usually due to the lack of appropriate pre-obtained
information, it is hard to evaluate and assess the quality
and efficiency of the unsupervised algorithms. On the other
hand, supervised ML techniques are generated by training a
probabilistic hypothesis on a set of annotated/labeled data to
be further used for prediction of unseen data. Other recently
introduced and used ML approaches such as reinforcement
learning and semi-supervised learning can be generalized as
one or a hybrid mix of the aforementioned approaches.

One of the very common and popular ML techniques that
has gained the attraction of the researchers in different fields
is artificial neural networks (ANN). Inspired by biological
neurological networks, they have been used for both unsu-
pervised and supervised learning [1], [2]. ANN has a layered
structure in which the output of one layer will be the input
for the next layer. The size of each layer is determined by the
number of its activation units (which resembles the neuron
synapses in equivalent biological network). Using multiple
layers with multiple activation units yields a highly nonlinear
function, which could be a very powerful tool for dealing with
complex problems. In the Al community and the literature, the
approaches involved with ANNSs are also called deep learning
(DL) methods, which refers to their layered structure.

Convolutional neural networks (CNN) is a DL approach,
which is commonly used in computer vision applications such
as object classification [3], object detection [4], and seman-
tic segmentation [5], [6]. CNN is based on a mathematical
operation named as convolution, which is accomplished by
the use of kernels (filters). While these kernels can be hand
engineered to find certain useful features in the images (like
horizontal or vertical edges), kernel parameters can be trained
in a supervised manner to get tailored for specific applications.
One advantage of using kernels in CNN is that its number
of parameters is not related to the input size while this is
not the case in fully connected networks. However, CNNs are



TABLE I
SOME OF THE FAMOUS CNN ARCHITECTURES WITH THE NUMBER OF
PARAMETERS INVOLVED.

Architecture name  Number of parameters

AlexNet [7] 60M
VGG [8] 138M
GooLeNet [9] 4M
DenseNet [10] 15M-25M

commonly accompanied by several fully connected layers for
performance improvement. In many of the CNN architectures,
these layers account for an reasonable fraction of the total
number of parameters. As ML problems get more challenging,
the number of layers or number of kernels to be used in the
CNN increases, which consequently results in a large number
of parameters. The number of parameters involved in some of
the famous CNN architectures are demonstrated in Table I. As
it can be seen from Table I, the number of parameters ranges
from hundreds of thousands to hundred millions. Therefore,
it is no surprise that the optimization involved in training
of such a networks requires large computational power. The
appearance of graphical processing units (GPU) and appropri-
ate frameworks such as Compute Unified Device Architecture
(CUDA) provides a powerful computational capability for this
purpose. While the training phase is slow and computationally
expensive, the inference (prediction) phase is relatively much
faster since it is basically a function evaluation.

With the ever-increasing challenges in the computer vision
field, the new methodologies appeared in the architecture
of the CNNs, which in most of the cases resulted in the
generation of deeper networks, i.e., utilization of more layers.
However, the dramatic increase in the depth of the network
causes an issue in the training phase known as the vanishing
gradient problem. Even the use of augmented layers like
inception networks [9], which combines multiple kernels and
pooling layers into one, suffers from the vanishing gradient.
The ResNet architecture originally introduced by He et al.
[11] gets around this problem by using skip connections
passing through two or three layers. The batch normalization
is also commonly used in ResNet to resolve the covariate shift
problem [12]. As a result, the ResNet architecture can go deep
to the order of hundreds of layers while keeping the number
of trainable parameters relatively low [13].

Embedded system is a term referring to a category of com-
puting based devices that can be a combination of hardware
an software in the context of electrical or even mechanical
devices. The concept of embedded systems can be seen in
different devices, such as mobile phones, digital watches, elec-
tronic vehicles, medical imaging devices, etc. Computer vision
applications are increasingly implemented in the embedded
devices [14] such as autonomous cars, smart home security,
and facial recognition gadgets commonly available these days
in different mobile phones.

Certain constraints such as size limitation, power supply,
and harsh operation environments may affect the performance
of the embedded systems [15], which can lead to the introduc-

tion of soft errors in RAM, CPU and/or other computing or
storage units of those systems. Different theories have been
introduced as a reason behind the soft errors from which
the alpha particles [16], high energy neutron from cosmic
radiations [17], and low energy cosmic neutron reaction with
Boron in integrated circuits (IC) [18] can be mentioned. The
soft errors can be divided into two types of Single Event Upset
(SEU) and burst errors. The SEU errors refer to the cases
where the value of only one bit is flipped (a bit with a value
of 1 gets corrupted to a value of O or vice versa), while in
the burst error case, multiple bits (usually consecutive ones)
get corrupted and their values changes. Using parity and/or
checksum bits can be useful in detecting if SEU errors has
happened, but it will not yield the corrupted bit and therefore,
it is not possible to fix the corruption unless mirrored/backed-
up data is used. While SEU only affects one bit which may
result in a minor resultant error, but the cascading effect of
that error, may result in the system to stop working. However,
in the initial phase of this error, this error may not be noticed
and this is why in the literature, it is also referred to as silent
data corruption (SDC).

In this study, we develop and test an algorithm for detecting
the corrupted bit in the case of SEU. Association rule mining
(ARM) will be used to find the frequent patterns in the most
significant bits (in 32 bit binary float representation) of the
stored data. The probabilistic measures are calculated based
on the confidence level criteria to calculate the probability
of corruption for each bit, and consequently, the bit with the
highest probability of corruption will be determined as the
corrupted bit.

II. RELATED WORK

Many attempts have been made to make and improve
the hardware for better resiliency against data corruption.
However, this problem still cannot be avoided completely [19]
and hence, the need for software-based detection and recovery
of the corrupted data is a necessity.

The research toward mitigating the soft errors have been
conducted in different fields. Fiala et al. [20] developed
their RedMPI framework for detecting and correcting the
data transferred in high-end clusters through message passing
interface (MPI) systems. RedMPI achieves this by creating a
replica of the primary messages via online verification of the
messages and hashing techniques whereby the message sent
from multiple senders is compared in order to detect the errors
and prevent the spread of the data corruption.

Zick et al. [21] developed a method for detecting silent data
corruption in embedded system of the NASA’s cube. The first
step in their method is the range checking of the processed
data. If the parameters are noticed to be out of the anticipated
range, that would be identified as the potential error. Since
the data processing in the embedded system of their study
was of the iterative type, by utilization of the data copies in
the register and cache, the authors performed an extra iteration
with the known input and output values to find any deviation.
They refer to their approach as a built-in self-test (BIST). The



detection rate was reported to be in the range of 89 to 97%
with an algorithm overhead complexity of 1%.

Charyyev et al. [22] studied different integrity verification
algorithms and introduced a Robust Integrity Verification
Algorithm (RIVA) for silent data corruption detection in file
transfers. End-to-end integrity verification is done by calculat-
ing the checksum of the source and the copied file through
hashing techniques. The calculated checksum will then be
exchanged between the source and the destination server to
check for any inequality. Since their proposed architecture,
RIVA, is designed for file transfer in distributed systems, it
consists of three concurrent threads responsible for transfer,
cache evicting, and checksum calculation. In the case where
a mismatch is observed between the checksum of the source
and the destination file, it is assumed that the file sent by the
source is correct and no approach is suggested on recovering
the possible error in the source file itself.

Ni et al. [23] proposed a software based approach named
FlipBack, for guarding the applications against the silent data
corruption. In their approach, detection of the soft error in the
field data (input data used in scientific computations) is based
on the continuity of the data to detect the possible anomalies.
In their analysis, spatial and temporal similarity in the data
is the foundation of finding any anomaly that may have been
caused by soft error. The accuracy of their recovery algorithm
was found to be in the range of 80 to 100%, with an overhead
complexity of 6 to 20%.

Berrocal et al. [24] used a data flow approach in the
high performance computing (HPC) applications to check
for deviations, which could be a potential soft error. Their
proposed methodology for iterative based HPC applications
consists of two steps. By time series analysis of each data
point, the authors predict the expected value of that point in the
consequent steps. In the next step, the normal interval range of
the prediction will be calculated. The observed values lying
outside this range would be assumed to be caused by soft
errors. It is worth to mention that one of the predictor models
the authors have used is the acceleration based predictor. In
this model, the point data in the last two iterations will be used
to calculate the rate of change in the point value, i.e. velocity,
and the rate of change in the velocity, i.e. acceleration, to
form an equation for estimating the variable point value in
the following iterations. To check for the performance of
their method, the testing was done on two different HPC
applications. While the error prediction rate of 66% to 90%
was noticed for errors introduced in these applications, no
methodology was proposed for recovering the errors, which
is the aim of the proposed work in this paper and is outlined
in the following sections.

III. METHODOLOGY

The Apriori algorithm introduced by Agrawal and Srikant
[25] is one of the most commonly used mining algorithms.
The Apriori algorithm is based on the fact that if an itemset
consisting of k items is frequent, then each subset of that
itemset must be frequent as well. In an iterative incremental
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Fig. 1. A sample corrupted weight with 9 most significant bits (n = 9) with
the corruption at the bit#3

fashion, this algorithm first finds the single frequent items.
In the subsequent iterations, it merges the previously found
frequent items to find the potential frequent candidates and
verifies if they are frequent or not. The algorithm stops at the
Ekth iteration if no itemset with the size of k can be found
to be frequent. There are some disadvantages associated with
the Apriori algorithm. The transaction database needs to be
completely checked for finding if an itemset is frequent or not.
Moreover, many spurious candidate frequent itemsets may be
generated, which could be be problematic in terms of memory
usage.

The frequent pattern growth (FP-growth) algorithm intro-
duced by Han et al. [26] uses a tree based structure for storing
the database items. This algorithm uses a recursive elimination
approach by removing the non-frequent individual items and
all the least frequent items. While the generation of the FP-tree
can be computationally expensive, the notable advantage of
this algorithm is that it only requires to read the database twice.
The utilization of a FP-tree for storing the frequent patterns
and prefix analysis leads to a memory-efficient algorithm.

In this paper, we have used the Apriori algorithm for the
ResNet32 and the FP-growth algorithm for the ResNetl10
rule mining, since the ResNet110 has a larger number of
parameters compared to ResNet32. It should be noted that
the final result is not dependent on the rule mining algorithm
and the resource constraints led us to such a decision.

The pseudo-code for our proposed recovery algorithm is
shown in Algorithm 1 and here, we delineate on different
aspects of this algorithm. First of all, the weights of the trained
CNN (ResNet32 and ResNet110) will be flattened into a list of
weights in floating point format. Thereafter, the weights will be
converted into their corresponding 32-bit binary representation
based on the IEEE754 standard [27]. At this stage, we have a
N x 32 matrix where N refers to the total number of weights
of the model. We select n first bits of the binary representation
as the most significant bits, and therefore, the weights matrix
will shrink into a N x n matrix. This binary matrix can be
viewed as a one-hot encoded list of N transactions with n
items, where 1 in the cell ij refers to the presence of item j
in transaction ¢ and vice-versa for the value of 0.

The corruption prediction is based on the assumption that
the corruption happens at only one specific bit of a single
weight. A sample corrupted weight is shown in Figure 1 with
n =9, i.e., 9 significant bits where the corruption has taken
place in the bit#3.

For each bit of a parameter (weight), the frequent patterns
and rule mining must be done twice for each bit leading to
2n times of the rule mining. One time with the assumption
that the bit in consideration has the value of 1 and another
time for the value of 0. The bit being examined will be



Algorithm 1 The pseudo-code of the recovery algorithm.

Require: Parameters converted into 32-bit binary format
for each bit B in msb do
140
Consequent bit (cb) + B
Antecedent bits (ab) + other bits
for each 01 in ab do
if b1 = 0 then
Flip all the bits with the same bit number as by in
the whole data.
end if
end for
Run frequent pattern finding and association rule mining
to find rules with their corresponding confidence values.
S1 < Summing over confidence values of rules where
they have only B as the consequent bit.
Flip all bits with the same bit number as B in original
data.
Run frequent pattern finding and association rule mining
to find rules with their corresponding confidence values.
Sy < Summing over confidence values of rules where
they have only B as the consequent bit.

flip back B
Creat an array Corruption Probability (CP)
if B =0 then
CP(i) = S1/ S0
else
CP(i) = SO / S1
end if
1 1+1
end for

Identified corrupted bit (ICB) = argmax(CP)
return /CB

considered as the consequent bit and all the other bits will
be used as the antecedent bit for the association rule mining.
Therefore, for each bit, the confidence of appearance of that
bit as the consequent bit will be assessed for both values of
0 and 1. If the bit in this study has the value of 1, the ratio
of the confidence of the same bit with the value of 0 to its
confidence when having the value of 0, will be considered
as its corruption likelihood and vice versa for the time the
bit has the value of 0. The bit with the highest corruption
likelihood will be determined as the corrupted bit. In this
paper, we have used the minimum support threshold of 0.3 for
finding the frequent patterns and the confidence metric with
the value of 0.3 was used for mining the rules as well. These
values were fine-tuned based on our conducted experiments for
achieving the best results. For finding the frequent patterns,
we have used the apriori [25] or fpgrowth [26] algorithms.
Apriori was used for the smaller CNNs and the fpgrowth was
used for the larger CNNs with more weights, since apriori
requires larger amount of memory. However, the speed of the
apriori algorithm was found to be higher compared to the
fpgrowth algorithm. It is worth mentioning that the number

Antecedent bits Consequent bit Confidence
{b1=0} {bo=1} 0.5297
{b3=0} {bo=1} 0.5281
{by=1} {by=1} 0.5299

{b1=0, b5=0} {bo=1} 0.5281
{b1=0, b,=1} {bo=1} 0.5299
{b3=0, b,=1} {bo=1} 0.5281

{b1=0, b3=0, by=1} {bo=1} 0.5281
{b,=0} {by=0} 0.4703
{by=1} {by=0} 0.4701

{b1=0, b,=1} {by=0} 0.4701

Fig. 2. A sample rule mining for bit#0 as the consequent bit

Corruption likelihood
Bit#3  Bit#4  Bit#5
278 0.00 0.84

Bit#0
0.38

Bit#1
0.00

Bit#2
242

Bit#6
0.84

Bit#7
0.20

Bit#8
0.59

Fig. 3. Calculated corruption likelihood for bits of weight shown in Fig. 1.

of most significant bits can be adjusted and even all the 32
bits could be used in the recovery algorithm. However, as we
move toward the rightmost bits, the corruption would have
more negligible effects on the value of the weight. Moreover,
the time complexity and computational cost of the frequent
pattern mining will increase dramatically as the number of
most significant bits increases.

To clarify further, consider the example shown in Figure 1
where the bit number three is corrupted but this is not known
to us. For the start, bit#0 will be used for rule mining. In
the first step, association of bit#0 with other values must be
checked by finding the frequent patterns. The association of
bit#0 as the consequent bit (with the values of 1 and 0), with
other bits in the weights of the CNN is shown in Figure 2.

Since, the original value of bit#0 (Figure 1) is 1, its
corruption likelihood will be the ratio of the sum of confidence
of the rules with the consequent bit of by = 0 to the sum of
confidences with the consequent bit of by = 1. Therefore, in
this case, the corruption likelihood of bit#0 will be calculated
by the following equation:

_ > Confidence(y,—o)
> Confidencep,—1)

The corruption likelihood calculated for other bits are shown
in Figure 3. Therefore, based on the calculated corruption
likelihood, bit number 3 will be identified as the corrupted bit.
In the very rare cases where two bits have the same corruption
likelihood, a random bit will be recognized as the corrupted
one.

CRy

=0.38 (1)

IV. EXPERIMENTAL SETUP AND RESULTS

In this section, we will use the recovery algorithm explained
in the previous section to predict the data corruption in the
CNNs. Different CNN architectures with different sizes, will
be used and different tests will be conducted to check the
efficiency of the proposed algorithm.



A. ResNet CNN Architecture and Training

In this paper, we have used ResNet CNN [11] for testing the
performance of our recovery algorithm. Two different versions
of ResNet, known as ResNet32 and ResNet110 (available in
the Keras library) were trained on the CIFAR10 image dataset
[28]. The CIFAR10 dataset contains 60,000 RGB 32 x32 pixel
images labeled into 10 different classes, from which 50,000
images were used for training and the rest were used for
testing. Each model was trained to achieve two levels of
accuracy by adjusting the number of epochs in the training
phase. A dynamic learning rate was set to 0.001 for the
epochs in the range of 1 to 80, and 0.1 for the consequent
epochs. The aforementioned CNN5s consist of two dimensional
convolutional layers, batch normalization, ReLU activation,
average pooling, and dense in the final layer. More details
on the four different CNNs that we have used to conduct our
experiments on, are presented in Table II.

Figure 4 demonstrates the frequency of the dominant value
(either O or 1) for each of the 32 bits, in the binary presentation
of the weights of the corresponding CNN model with the
accuracy of 0.915 and 0.916. As can be seen, for both models,
the dominant value frequency of the 2" and 4™ bits are close
to 1.0. For example, the 2 bit in both CNNs have the value
of 0 for more than 99.8% of the weights. Therefore, the
naive approach of recognizing the 2™ bit as the corrupted
bit, whenever the value of 1 is observed, could give us a high
accuracy value of 99.8%. Hence, for the cases of corruption
in high frequency bits, the prediction accuracy of the recovery
algorithm should exceeds the accuracy of the naive approach,
if the evaluation is based on the accuracy metric. Obviously,
a study can be conducted to evaluate the performance of the
recovery algorithm against the naive approach in terms of other
metrics such as sensitivity and specificity.

TABLE II
SPECIFICATIONS OF RESNET MODELS TRAINED ON CIFAR10 IMAGE
DATASET.
CNN #Parameters  #Epochs  Accuracy

ResNet32 470,218 50 0.820

ResNet32 470,218 100 0.915

ResNet110 1,742,716 50 0.839

ResNet110 1,742,716 100 0.916

B. Recovery Algorithm Parameter Tuning

Given the description of our proposed recovery algorithm,
it is clear that there are two parameters that influences its
performance. The first one is the minimum support level used
for finding the frequent patterns in the data (using either
apriori or fpgrowth) and the minimum confidence level, which
is used for finding and trimming the association rules. It is
obvious that lowering the minimum support value would yield
inclusion of more frequent patterns and more data would be
considered in the extraction of the association rules. However,
as a downside, the computational cost of the recovery algo-
rithm would increase drastically.
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Fig. 4. Frequency of dominant value (either 1 or 0, whichever appears more
in the weights) for each of 32 bits in ResNet32 and ResNet110 trained with
accuracy of 0.915 and 0.916.

Hence, in an effort to find the best values of those param-
eters, we have done a series of preliminary experiments with
different assigned values for the minimum support level and
the minimum confidence value to check the performance of
the recovery algorithm. Table III summarizes the conducted
tests and represents the success rate of the recovery algorithm
applied on the trained ResNet32 with the accuracy of 0.915.

TABLE III
THE SUCCESS RATE OF THE RECOVERY ALGORITHM APPLIED ON THE
RESNET32, WITH DIFFERENT MINIMUM SUPPORT LEVEL AND MINIMUM
CONFIDENCE VALUES.

Minimum support level ~ Minimum confidence  Success rate

0.2 0.2 0.60
0.2 0.3 0.84
0.2 0.4 0.80
0.2 0.5 0.64
0.2 0.6 0.60
0.2 0.7 0.60
0.3 0.2 0.64
0.3 0.3 0.80
0.3 0.4 0.76
0.3 0.5 0.40
0.3 0.6 0.76
0.3 0.7 0.80
0.4 0.2 0.52
0.4 0.3 0.56
0.4 0.4 0.56
0.4 0.5 0.36
0.4 0.6 0.64
0.4 0.7 0.52
0.5 0.2 0.40
0.5 0.3 0.52
0.5 0.4 0.08
0.5 0.5 0.36
0.5 0.6 0.40
0.5 0.7 0.48

The conclusion that can be made from Table III is that
the lower the value of the minimum support and minimum
confidence level, the better the performance of the recovery
algorithm. While the best overall performance is seen for the
minimum support and minimum confidence of 0.2 and 0.3,
respectively, the minimum support level of 0.3 associated with



the minimum confidence of 0.3 shows a relatively good and
comparable performance to the best value as well. However,
since using the min support level of 0.2, will increase the
number of frequent patterns, which consequently increase
the time complexity of the recovery algorithm, we chose to
proceed with setting both the min support level and the min
confidence to 0.3. It should be noted that the success rate of
the experiments in Table III is calculated by running 25 runs
for each case, and by introducing the corruption of a random
bit of a random weight. The number of most significant bits
were set to 9. If necessary, similar tests can be performed for
other kinds of corruption (presented later in the paper) and
different number of most significant bits as well. However,
conducting such a combinatorial experiment will be very time
consuming and it should be only done for providing a rough
estimation on the appropriate values of the parameters, to be
later used for different kinds of experiments.

C. Corruption in Random Weight and Random Bit

The first set of experiments we have designed for assessing
the recovery algorithm is to introduce a corruption in a single
bit of a single weight of the CNN. The number of most
significant bits are selected to be 9, 11, and 13 to check
its effect on the recovery algorithm. The experiments will be
conducted on each of the four available CNNs mentioned in
Table II, and for each of the three pre-selected number of most
significant bits, which yields a total of 12 experiments. For
each experiment, the corruption and recovery algorithm appli-
cation will occur 100 times. The fraction of instances where
the recovery algorithm successfully predicted the corrupted bit
will be reported as the accuracy of the algorithm. The results
are presented in Table I'V.

TABLE IV
ACCURACY OF RECOVERY ALGORITHM ON CORRUPTION INTRODUCED ON
A RANDOM BIT AND A RANDOM WEIGHT.

CNN (Accuracy) msbi =9 msbi =11 msbhi =13
ResNet32 (0.820) 0.62 0.54 0.42
ResNet32 (0.915) 0.66 0.48 0.47
ResNet110 (0.839) 0.60 0.61 0.51
ResNet110 (0.916) 0.61 0.57 0.60

Moreover, we have repeated the tests for 30 replicates for
each of which the algorithm is tested 100 times. This will
help us to find the performance variance of our algorithm. We
have performed the replications for the random bit corruption
in ResNet32 with the accuracy of 0.915, with different most
significant bits of 9, 11, and 13. The mean performance and
the variance are shown in Table V.

TABLE V
THE MEAN PERFORMANCE OF THE RECOVERY ALGORITHM OF 30
REPLICATES. A RANDOM BIT IS CORRUPTED FOR RESNET32 WITH THE
ACCURACY OF 0.915 AND THE ALGORITHM IS TESTED 100 TIMES.

msbi =9 msbi =11 msbi =13
Mean recovery rate 0.7210 0.5510 0.4780
Variance 0.0014 0.0054 0.0066

As it can be seen from Table IV, for almost all the cases,
the accuracy of the recovery algorithm decreases with the
increase in the number of most significant bits. Moreover,
it is expected that the required time for finding the frequent
pattern increases. Table VI represents the relative time cost
of the recovery algorithm with respect to the number of most
significant bits used. As can be seen, the time complexity of
the recovery algorithm, when 11 and 13 most significant bits
are used, increases 35% and 65% compared to the case where
9 bits are included as the most significant bits. This higher
time complexity is based on two reasons. First, the volume of
the data increases, and second, the number of times the rule
mining should be performed increases as well, since the rule
mining needs to be done twice for each bit. Therefore, when
13 bits are used, the rule mining will be done for 26 times
on data which is approximately 44% larger compared to the
18 times of the rule mining operation when 9 most significant
bits are considered.

TABLE VI
AVERAGE RELATIVE ELAPSED TIME FOR PERFORMING THE RECOVERY
ALGORITHM ON DIFFERENT CNNS. INCREASING THE NUMBER OF MOST
SIGNIFICANT BITS TO 11 AND 13, RESULT IN 35 AND 65% INCREASE IN
THE AVERAGE TIME COMPLEXITY, COMPARED TO THE CASE WHERE 9
MOST SIGNIFICANT BITS ARE USED.

CNN (Accuracy) msbi = 9
ResNet110 (0.916) 1.0

msbi = 13
1.65

msbi = 11
1.35

D. Corruption in Weights with High Frequency

As mentioned earlier, some bits in the CNN weights are
dominated with a specific value of either 1 or O as illustrated
in Figure 4. Therefore, a set of experiments are carried on to
test the recovery algorithm on the corruption of those specific
bits. As can be seen from Figure 4, bits 1 and 4 have repetition
frequency of higher than 99%. Therefore, in this section, we
will introduce corruption in the first and fourth bit of a random
weight of the CNN and will measure the efficiency of our
recovery algorithm.

TABLE VII
ACCURACY OF RECOVERY ALGORITHM ON CORRUPTION INTRODUCED ON
BIT #1 - DIFFERENT NUMBER OF MOST SIGNIFICANT BITS ARE USED IN
RULE MINING ALGORITHM.

CNN (Accuracy) msbi =9 msbi=11 msbi =13
ResNet32 (0.820) 0.99 0.99 1.00
ResNet32 (0.915) 1.00 1.00 1.00
ResNet110 (0.839) 0.98 1.00 1.00
ResNet110 (0.916) 1.00 1.00 1.00

Based on the presented results, for the case where the
corruption is introduced on the bit#1 of a random weight,
the recovery algorithm shows very good performance. Out
of 12 different types of experiments presented in Table VII,
the recovery algorithm yielded a 100% accuracy, and two of
them with the accuracy of 99%. It seems that the dimension
of the CNN does not affect the accuracy of the recovery
algorithm in this specific case and the recovery algorithm



TABLE VIII
ACCURACY OF RECOVERY ALGORITHM ON CORRUPTION INTRODUCED ON
BIT #4 - DIFFERENT NUMBER OF MOST SIGNIFICANT BITS ARE USED IN
RULE MINING ALGORITHM.

CNN (Accuracy) msbi =9 msbi =11 msbi =13
ResNet32 (0.820) 1.0 1.0 0.98
ResNet32 (0.915) 1.0 0.99 1.0
ResNet110 (0.839) 0.8 0.84 0.74
ResNet110 (0.916) 0.71 0.82 0.76

works well for both ResNet32 and ResNetl10. Moreover,
repeating the test for 30 replicates on ResNet32 (0.915), the
mean performance of the recovery algorithm was found to be
0.994 and 0.996 for the cases of the corruption at bit#1 and
bit#4, with low variance of 0.00004 and 0.00003, respectively.
The low variance in the performance of the algorithm confirm
its effectiveness in the good prediction ability of the corrupted
bit. However, looking at Table VIII, where the performance
of the recovery algorithm on the weights with corruption
on bit#4 is presented, the performance is sub-par for the
ResNetl110 with the maximum accuracy of 84%. Therefore,
since bit#4 has a value of 1 for more than 99% of the time,
whenever its value is observed to be 0, identifying it as a
corrupted bit without any further analysis, could result in better
performance compared to the recovery algorithm. However, for
ResNet32, the performance is acceptable compared with the
naive approach.

E. Corruption in Specific Types of Weights

In ResNet, most of the weights are either 2-dimensional
convolutional coefficients (Conv2D) or batch normalization
coefficients. In this set of experiments, we will isolate the
Conv2D and batch normalization coefficients and will only use
these coefficients for mining the association rules and checking
the performance of our recovery algorithm. The Conv2D
weights corresponds to approximately 98.9% and 99.9% of
all weights in ResNet32 and ResNetl10, respectively. Batch
normalization coefficients constitute a much smaller frac-
tion of the weights including 0.01% for both ResNet32 and
ResNet1 10 CNNs. Moreover, the quantitative distribution of
all the weights, Conv2D, and batch normalization weights can
be seen in Figures 5.

Table IX represents the accuracy of the recovery algorithm
on the corruptions introduced on the Conv2D and batch nor-
malization weights. The first 9 bits of the binary representation
were used for constructing the recovery algorithm.

TABLE IX
ACCURACY OF RECOVERY ALGORITHM ON CORRUPTIONS INTRODUCED
ON CONV2D AND BATCH NORMALIZATION WEIGHTS.

CNN (Accuracy) Conv2D  Batch normalization

ResNet32 (0.820) 0.64 0.66
ResNet32 (0.915) 0.68 0.59
ResNet110 (0.839) 0.64 0.62
ResNet110 (0.916) 0.62 0.61

Comparing the results presented in Table IX with those
presented in Table IV, no specific pattern can be seen since

for some cases like ResNet32 (0.915) there is an improvement
in the recovery algorithm for Conv2D weights, while for the
batch normalization the algorithm performance drops down.
Overall, no notable improvement in performance can be seen
when the weights are isolated.

V. CONCLUSION AND FUTURE WORK

A recovery algorithm was presented for recovering the
data corruption in the case of SEU. The ResNet32 and
ResNet110 CNN were trained on the CIFARI10 dataset, with
two different accuracy levels for each of them. The number of
parameters involved with ResNet110 is 3.7 times greater than
that of ResNetl110. The Apriori and FP-Growth data mininig
algorithms were used for finding the frequent patterns and
the associated confidence level with the obtained rules. The
confidence levels were used later to define a probabilistic
measure for identifying the corruption possibility.

The pre-trained parameters are stored in the format of IEEE-
754, which uses a 32 bit binary. Therefore, the bits closer to the
far-right side of the binary representation will have a marginal
and insignificant effect on the final value of that parameter.
Hence, we have reduced the number of bits in this research
study to 9, 11, and 13 bits to investigate its effect on our
recovery algorithm. The recovery algorithm was noticed to
drop when the number of most significant bits are increased.
In the case of using 9 significant bits, the recovery rate was
observed to be in the range of 61 to 66% when the errors were
introduced for a random bit. Moreover, in some bits, more than
99% of all the parameters are showing to have one specific
value. The performance of the algorithm was assessed in the
case of corruption for those bits. For some bits, the recovery
rate was noticed to be in the range of 98 to 100%, however,
for some other frequent bits and specially for ResNet110 the
performance declined as low as 74%.

In this paper, the assumption of SEU was made which limits
the corruption level at only one bit. Research on developing
algorithms for recovery of the corrupted weights with multiple
bits is also of interest. While this work was focused on
the recovery of corruption, rather than detection with the
assumption that the corrupted weight is already identified,
future work will develop algorithms for simultaneous detection
and recovery.
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