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Abstract—Nowadays people are very concerned about their
health. For example, people want to keep track of how often
they are active throughout the day. Hence many smart devices are
equipped with sensors which help to keep track of the activities.
Users who use these sensors want to share the information to
be analyzed for their own health benefits. However, at the same
time the users do not want to share the sensitive information. In
this paper, we propose a privacy preserving predictive model. We
used the concept of denoising autoencoder to hide the sensitive
attributes of a user. We divided the data sets into three different
subsets: desired, sensitive, and non sensitive subsets. The output
of the denoising autoencoder will only be the desired and non-
sensitive subsets. The sensitive subsets are hidden by the non-
sensitive subsets. We evaluated the efficacy of our predictive
model using three different flavors of autoencoders (CNN, Deep,
and LSTM). To retain the accuracy as similar as possible
compared to the original data set, we used a convolutional neural
network for classification. We measured the F1-score of our
model against each of the three autoencoders.

Index Terms—AutoEncoder Neural Networks, Generative Ad-
versarial Neural Networks, Long Term Memory Neural Network,
Convolutional Neural Network.

I. INTRODUCTION

In recent years smart devices are used by almost every
person. Smart devices initially were used for communication.
People used it to access emails or social media applications.
Slowly smart devices started implementing sensors, which
collect data about a particular user [1]. The collection of data
has both advantages as well as disadvantages. For example,
GPS enabled smart phones tell the whereabouts of a person
throughout the day, thus, invading a person’s privacy [2].
On the other hand these smart devices are equipped with
sensors, which can track a user’s activities throughout the
day. For example jogging, sitting, walking, running , drinking,
smoking, and sleeping activities can be tracked. If a person
does not meet his / her target, the sensor alerts the person,
so that the person can be notified to meet the target. This
information is sent to a cloud service to actuate a response.
As the information benefits the health, the users want to share
the data for analyzing.

Recently Wyze Labs [3], which makes smart cameras and
connected home gadgets, has confirmed that the databases

holding millions of customers’ information were exposed to
the public. Since data breach is increasing, privacy concerns
have arisen from the customers. The customers do not want to
share sensitive information with a third party. For example, a
user wants to share the jogging and walking information but
not the drinking or the smoking information. People nowadays
do not trust the cloud services. Therefore, the main challenge
today is how to sent the desired statistics to the cloud without
interfering with personal information.

Moreover, the data collected from the smart devices is
mostly time series data, so it is very challenging not to sent
a part of the data to the cloud. We can only sent the data by
transforming the time series data. By transforming we mean
changing or perturbing the sensitive part of the time series
data. However, we have to make sure that the transformed
data should provide the same accuracy as the original data
set. This is done to make sure that the transformed data set is
not a misleading data set.

In this paper, we consider two time series data sets [4]. We
then transform the time series data sets to be used by the cloud
service. Motivated by the recent advancement in autoencoder,
we implemented denoising autoencoder. In this paper we will
show how a user will send only desired information to the
cloud service for further research. This is achieved by the
user trusting a trusted authority. The trusted authority collects
the original data set and then transforms the data set. The
transformed data set is used as the input to the denoising
autoencoder to produce a transformed output. The transformed
output has the sensitive attributes hidden. Instead of only using
external noise to hide sensitive information, we will also use
non-sensitive information from our data set to replace the
sensitive information. To measure the efficacy of our model we
will use different flavors of autoencoders: CNN, LSTM and
Multilayer. We will also use a CNN as a classifier to check
the accuracy of both the original and the transformed data set.

This paper is outlined as follows. In the first part of this
paper, we describe the related work and the preliminaries
required for understanding our research work. In the second
part of the paper we describe our proposed model. In the third
section we describe the experimental setting and results of our
two data sets. The experimental setting gives a brief introduc-
tion to the time series data sets that are used. Afterwards,978-1-7281-2547-3/20/$31.00 ©2020 IEEE



we describe the security part of our model followed by the
conclusion.

II. RELATED WORK

In this section we describe the various approaches related to
our privacy preserving model. The various approaches, which
are described here are the differential privacy method [5],
the filtering method, data mapping method, and finally the
substitution method.

Differential Privacy (DP) [6] is an approach, which adds
constraints on the algorithm used to publish aggregate in-
formation. DP limits the disclosure of private information of
records in the data sets. Furthermore, DP permits companies
to access a large number of sensitive data for research analysis
and business ananalysis without privacy breach. Also, research
institutions use differential privacy technology to automate
privacy processes within cloud-sharing communities across
countries. For example, Apple uses DP to protect the privacy
of users and resolve data sharing problem. The authors in [7]
have shown the amount of noise to be added in differential
privacy to make data secure. The authors have shown that by
adding gaussian noise instead of laplacian noise will increase
the computational efficiency. Also, the authors in [8] used
differential privacy with machine learning. The authors used
two standard public data sets, MNIST [9] and CIFAR-10 [10].
They improved the privacy of the data sets by introducing the
Stochastic Gradient Descent (SGD) [11] algorithm. The major
disadvantage of differential privacy is to add more noise if
more data has to be hidden. This decreases the efficiency of
a data set.

Another approach to maintain privacy in the data is by
filtering. Instead of adding constraints on the algorithm, the
filtering technique filters the sensitive information. Collabo-
rative filtering is a very secure way to filter the sensitive
information. This type of filtering has been best used for
giving recommendation to the users. In [12], the authors used
collaborative filtering for privacy preserving. They aimed at
solving this problem by the systematic collection of sensitive
information of preferences. They partitioned the data between
parties to ensure privacy. Different techniques of collaborative
filtering are meintioned in [13]. The paper gives an overview of
the model-based, memory-based and hybrid-based collabora-
tive filtering techniques. The key disadvantage of collaborative
filtering is that it does not work well with sparse data sets [14].

Data Mapping is another technique to hide data. Data
Mapping is a process to map data fields from the source
fields to the target fields. One of the data mapping techniques
used in healthcare privacy is geomasking [15]. The authors
provide protection for individual addresses while maintaining
spatial resolution for mapping purposes using geomasking. In
[16], a new adaptive geomasking technique known as donut
geomasking was proposed. The new technique extends the
current method of geomasking by ensuring a user defined
minimum level of geoprivacy. The authors in [17] propose
another geographic masking technique known as location
swapping. When locations of individual-level health data are

released in the form of published maps, the identity of these
individuals could be identified through reverse geocoding.
Location swapping replaces an original location with a masked
location selected from all possible locations with similar
geographic characteristics within a specified neighborhood.
The main disadvantage of this method that it is impossible
to say that the feature extracted from the raw data set does
not contain any sensitive information.

Another way of perturbing data is known as randomization
of data. Randomization of data is a process of making data
random. This could be done by generating a random permu-
tation of a sequence, generating a random numbers, or by
selecting random samples of the population. The authors in
[18] proposed an approach whereby many clients can protect
their personal information in a server. The clients can use a
randomization algorithm to randomize the data and then sent
it to the server. The authors have chosen the randomization
technique so that the aggregate properties can be recovered
with sufficient precision. The authors in [19] introduce a
family of geometric data transformation methods (GDTMs)
that distort confidential numerical attributes in order to meet
privacy protection in clustering analysis.

In [20], the authors used symmetric key encryption to
randomize the password. Different classifiers were used to
analyze the accuracy of the model. Also, the authors in [21]
randomized the sensitive attributes of a patient data set using
fuzzy membership [22] functions to hide the sensitive data.
However, these randomization methods have not been applied
to time series data.

The data sets used in all the above mentioned related work
are not time series data sets. The authors in [23] introduced
the concept of replacement technique with time series datasets.
Data replacement or data substitution is a technique that can be
used with time series data. The technique replaces the sensitive
data of a user by non-sensitive data. Then, the transformed data
is sent to the cloud. The authors first divided the data sets into
three subsets: desired, sensitive, and nonsensitive. Then, the
authors replaced the sensitive attributes with the non-sensitive
attributes. The authors applied the denoising autoencoder to
transformed the data set. However, the authors limited their
approach to only multilayer autoencoder. Thus, in our paper
we are experimenting with different time series datasets and
with several different autoencoder neural networks. We show
and compare the efficiency of different flavors of autoencoder.

III. PRELIMINARIES

In this section, we give a brief overview of the background
information of our privacy preserving model. Our privacy
preserving model uses two different deep learning neural net-
works: AutoEncoder and 1-D Convolutional Neural Network.
Each of the neural networks is summarized below:

• Autoencoder: Autoencoder [24] is a data compression al-
gorithm. An autoencoder is built based on two important
functions: Encoding and Decoding. The encoding func-
tion compresses the feature vector to the most important
feature vector. On the other hand, the decoding function



decompresses the data to the original feature vector. The
optimization of the encoding and decoding functions are
done using Stochastic Gradient to minimize the recon-
struction loss. The two functions in the autoencoder are
very data specific and lossy. By data specific we mean
that the autoencoder will only able to compress data on
which they are trained on. By lossy we mean that the
output of the decoder will be degraded compared to the
original output.

• Denoising Autoencoder: One of the interesting practical
applications of the autoencoder is data denoising. Au-
toencoders with more hidden nodes than the inputs learns
the risk of learning identity functions. Identity functions
return the same output as its input. If an autoencoder
returns the same output as its input then it is of no
use. Denoising autoencoders [25] addresses the problem
of identification risk by purposefully corrupting (adding
noise) the inputs. In general, the amount of nodes to be
set to zero is about 50%. Others suggest a lower count of
30%. However, it depends on the amount of input nodes
and data. If the data set is small we might have to add
a higher percentage. The denoising autoencoder is used
in our model to replace the sensitive attributes. We used
different flavors of autoencoders incorporated with the
denoising property to increase the efficacy of our model.
The denoising property solves the problem of ‘overfitting’
by corrupting the data by randomly turning some of the
input values to zero.

• Convolutional Neural Network: Convolutional Neural
Network (ConvNets or CNN) are used in image recog-
nition [26] and classification [27]. There are four op-
erations performed by a CNN: convolutional step, non-
linearity, pooling, and classification. In the convolution
step, the feature map is created from the data sets. After
the convolutional step, ReLu is used as an non-linear
operation. ReLu functions add non-linearity to the CNN
since most of the data sets in the real world are nonlinear.
Then pooling is a applied. Pooling is also known as
subsampling or downsampling. This function reduces the
dimentionality of the feature map. At the same time it
retains the most important information. Along with the
AutoEncoder we used a Convolutional Neural Network
model to check if the efficiency of the raw and modified
data is equal. Otherwise there is no use of providing a
misleading data set.

IV. PROPOSED APPROACH

This section shows the predictive model to substitute the
sensitive attributes of the data sets with nonsensitive attributes.

The modified data set can be used by a cloud server.
Our proposed approach consists of three parties: user, trusted
authority, and server.

To accomplish the privacy policy of the user we divided
the data sets. Our data sets have been grouped into three
subsets: black listed, white listed, and gray listed. The black
listed subset consists of sensitive attributes, which the user

does not want to reveal. The white listed subset consists of
the desired information about the user. This information can
benefit the user when shared. The gray listed subset consists
of non-sensitive information. The user does not worry about
the information, if it is shared. The tasks of each of the three
parties are explained below:

• User: The user/subject from the skoda data set wore a
sensor on the left hand as well as on the right hand. The
data consists of classes ‘write on notepad’, ‘open hood’,
‘close hood’, ‘check gap on the front door’, ‘open left
front door’, ‘close left front door’, ‘check trunk gaps’,
‘open and close trunk’, and ‘check steering wheel’. The
Hand gesture data set consists of two subjects. Each
subject performed a certain activity. The activities/classes
are ‘open window’, ‘close window’, ‘water a plant’, ‘turn
a book’, ‘drink a bottle’, ‘cut with knife’, ‘chop with
knife’, ‘stir in bowl’, ‘forehand’, ‘backhand’, ‘smash’.
The sensors collect time series data. The user wants to
receive benefits from the data by sharing this information
on the cloud. However, at the same time the user does
not want to share the sensitive attributes such as ‘write
on notepad’, ‘open and close hood’, ‘drink a bottle’, and
‘turn a book’.

• Trusted Authority: The user trusts only the trusted author-
ity. The trusted authority is a machine learning platform.
The user sends the original time series data set to the
Trusted Authority. Along with the data set, the user also
sends the list of the three subsets. The three subsets
consist of the desired, sensitive, and non-sensitive infor-
mation provided by the user. Inspired by the denoising
autoencoder, we implemented the model in our proposed
approach. First, we substitute the black listed subset with
the gray listed subset. To add more privacy we generated a
noisy gaussian digit and clip the images between 0 and 1.
Then, we added it to the transformed black listed subset.
The transformed training set consists now of the original
white listed subset, the original grey listed subset, and
the transformed black listed subset. As we substitute the
sensitive information with non-sensitive information, we
call our autoencoder as substitute autoencoder. Then, we
train the substitute autoencoder to map the transformed
data set to the original data set.

• Server: The server is a third party who needs the desired
information for further analysis. The user requests service
from the server. The server allows the user to upload the
time series data after sharing some information. The user
does not trust the server, thus the user does not give the
original data set to the server. The user gives the original
data set to the trusted authority. The trusted authority
is trusted by both the server and the user. The trusted
authority transforms the data set by substituting the black
subset with the grey subset. The transformed data set is
then given to the server.



V. EXPERIMENTAL SETUP

A. Data Set

Experiments are conducted on two data sets. The data sets
are the Skoda [28] and the Hand gesture data set [29].

• Skoda Data set: This data set describes the activities of
assembly-line workers in a car production environment.
The data set considers the recognition of 11 activity
classes performed for one of the quality assurance check-
points of the production plan. In the study, one subject
wore nineteen 3D accelerometers on both arms and
performed a set of experiments using sensors placed on
the two arms of a tester (10 sensors on the right arm,
and 9 sensor on the left arm). The Skoda data set has
been employed to evaluate deep learning techniques in
sensor networks, which makes it an appropriate data set to
evaluate our proposed substitute autoencoder framework.

• Hand Gesture Data set: In this data set, the sensory
data from hand gestures are recorded for two subjects.
The data is recorded using an accelerometer and gy-
roscope worn by the subjects. The data sets consist of
12 classes/activities performed. The 12 classes include 8
regular gestures and 3 gestures for playing tennis. The
data set also includes a null activity where no gesture is
performed.

B. Experimental Setting

The Skoda and Hand gesture data sets are human activity
and context recognition data sets. The data sets have different
classes. We divided the classes into three different subsets:
desired, sensitive, and non-sensitive subsets. We mentioned
the desired and non-sensitive classes to the server. The user
did not provide the sensitive subset to the server but only to
the trusted authority. To send the transformed data set to the
server, the following steps were performed:

• First we took the sliding window size d = 30 and step size
w = 3. Then, each of the classes/activities are mapped to
numbers starting from zero. Afterwards, using the train
split we created the training and testing data set. The
training and testing data sets are in the shape of (samples,
features, window size).

• In the second step, we created three data sets: White
(desired), Black (sensitive), Gray (non sensitive) subsets.
These subsets will be used to train the substitute autoen-
coder.

• We created a transformed data set, which will hide the
sensitive attributes. To hide the sensitive attributes we
substitute the non-sensitive or gray data set with the
black data set. After substitution, we added gaussian
noise to the transformed black subset using the following
commands:

rnd idx train = np.random.choice(g train
data.shape[0], b train data.shape[0], replace=False)

b train transformed = g train data[rnd idx train,:]

b train transformed = x train transformed + 0.5 *
np.random.normal(loc=0.0, scale=1.0, size=b train
transformed.shape)

b train transformed = np.clip(b train transformed,
0., 1.)

rnd idx test = np.random.choice(g test
data.shape[0], b test data.shape[0], replace=False)

b test transformed = g test data[rnd idx test,:]

b test transformed = x test transformed + 0.5 *
np.random.normal(loc=0.0, scale=1.0, size=b test
transformed.shape)

b test transformed = np.clip(b test transformed, 0.,
1.)

Now, the transformed data set consists of white, grey and
black transformed subsets. We substitute the black subset
with the grey subset. Then, the substitute autoencoder
maps the transformed data set to the original data set.
The output will be the transformed data set where the
black subset has been substituted by the grey subset.

VI. RESULTS

To analyze the efficacy of our model we used different
flavors of autoencoders. We analyzed our model with the
deep autoencoder [30], convolutional autoencoder [31], and
finally analyzed with the LSTM autoencoder [32]. Our data
sets are time series data that contain repeated patterns, and
thus, we chose deep ,convolutional and LSTM autoencoders.
Deep autoencoder: We first reshaped the Skoda and the Hand
Gesture data sets from 3d to 2d shape. Then, we used three
layers for encoding as well as three layers for decoding.
The activation function for the input and the output layers is
‘Linear’. For all hidden layers we used the Scaled exponential
Linear Unit (Selu). We used the Mean Square Error (MSE) as
loss function.

Convolutional Denoising Autoencoder: Here we used a
1d convolutional autoencoder. We used ‘relu’ as the activation
function in all layers except the output layer. In the output
layer, we applied ‘sigmoid’ as the activation function. Here,
we also used MSE as the loss function.

LSTM Denoising Autoencoder: LSTM Autoencoder can
learn a compressed representation of sequence data and has
been used on video, text, audio, and time series sequence data.
Inspired by its application in time series data analysis, we
implemented LSTM in our model. Here we reshaped the data
into (samples, 1, windowsize×features). Hence, for the left
hand the data is reshaped into (samples, 1, 30×54), and for the
right hand the data is reshaped into (samples, 1, 30×60) since
the right hand and the left hand have 60 and 54, respectively.



For the Hand gesture data set for both Subject 1 and 2 the
data is reshaped into (samples, 1, 30× 15).

Finally, the output of each of the different autoencoders is
sent to the server for classification. The server is a machine
learning platform, which contains a convolutional neural net-
work. However, we need to check the efficiency of both the
original and the transformed data set. If the transformed data
set does not have the efficiency as the raw data set, then it
is referred to as a misleading data set. The data set will be
of no use to the server. Thus, we evaluated the performance
of both the original and the transformed data sets with the
convolutional autoencoder in the server.

For the Skoda data set, the results are summarized in
Table I, Table II and Table III. Table I shows the F1-score
of both the original and the transformed data set for the
CNN denoising autoencoder. Table II shows the F1-score of
both the original and the transformed data set for the Deep
denoising autoencoder. Table III summarizes the F1-score of
the LSTM denoising autoencoder.

TABLE I
F1-SCORE FOR CNN AUTOENCODER OF SKODA DATA SET (OF1 STANDS
FOR ORIGINAL DATA SET AND TF1 STANDS FOR TRANSFORMED DATA SET)

Hand
List of
subsets OF1 TF1

Left

Sw={4,8,9,10}
Sb={1,5,6,7}

Sg={0,2,3}

94.19
87.21
90.95

18.13
00.10
62.83

Left

Sw={0,2,3}
Sb={1,5,6,7}

Sg={4,8,9,10}

90.95
87.21
94.19

65.69
02.72
15.56

Left

Sw={4,8,9,10}
Sb={1,5,6}

Sg={0,2,3,7}

94.19
87.58
90.27

15.37
00.04
60.68

Left

Sw={4,8,9,10}
Sb={1,5}

Sg={0,2,3,6,7}

96.26
92.47
90.18

14.98
04.26
57.48

Right

Sw={4,8,9,10}
Sb={1,5,6,7}

Sg={0,2,3}

96.42
91.41
88.30

11.18
00.31
63.36

Right

Sw={1,4,10}
Sb={2,3,8,9}
Sg={0,5,6,7}

95.90
91.41
88.30

11.18
00.31
63.36

Right

Sw={1,4,10}
Sb={2,3,9}

Sg={0,5,6,7,8}

95.90
89.87
90.76

01.16
07.33
52.36

Right

Sw={4,9}
Sb={1,2,3}

Sg={0,5,6,7,8,10}

96.87
89.44
91.17

26.45
09.63
52.14

For the Hand Gesture data set, the results are summarized
in Table IV, Table V and Table VI. Table IV shows the F1-
score of both the original and transformed data set for the
CNN denoising autoencoder. Table V shows the F1-score of
both the original and the transformed data set for the Deep
denoising autoencoder. Table VI summarizes the F1-score of
the LSTM denoising autoencoder.

TABLE II
F1-SCORE FOR DEEP AUTOENCODER SKODA DATA SET (OF1 STANDS

FOR ORIGINAL DATA SET AND TF1 STANDS FOR TRANSFORMED DATA SET)

Hand
List of
subsets OF1 TF1

Left

Sw={4,8,9,10}
Sb={1,5,6,7}

Sg={0,2,3}

95.47
87.04
87.83

56.54
00.09
66.21

Left

Sw={0,2,3}
Sb={1,5,6,7}

Sg={4,8,9,10}

87.83
87.04
95.47

81.78
00.14
89.51

Left

Sw={1,3,5,7}
Sb={0,2}

Sg={4,6,8,9,10}

93.50
88.90
94.76

76.37
12.17
83.27

Left

Sw={1,5,6,7}
Sb={0,2,3}

Sg={4,8,9,10}

87.04
87.83
95.47

13.46
52.50
30.18

Right

Sw={2,3,9}
Sb={0,5,6,10}
Sg={1,4,7,8}

89.87
90.19
93.12

01.18
14.28
09.92

Right

Sw={2,3,9,10}
Sb={0,5,6}

Sg={1,4,7,8}

97.93
91.53
97.90

06.55
63.77
05.48

Right

Sw={2,3,9}
Sb={0,5,6}

Sg={1,4,7,8,10}

89.87
89.53
94.77

82.17
01.14
90.10

Right

Sw={2,3,9,10}
Sb={0,4,5,6}

Sg={1,7,8}

97.93
92.56
98.12

19.60
02.28
19.40

TABLE III
F1-SCORE FOR LSTM AUTOENCODER SKODA DATA SET (OF1 STANDS

FOR ORIGINAL DATA SET AND TF1 STANDS FOR TRANSFORMED DATA SET)

Hand
List of
subsets OF1 TF1

Left

Sw={4,8,9,10}
Sb={1,5,6,7}

Sg={0,2,3}

95.95
88.00
91.89

93.89
00.04
92.05

Left

Sw={0,2,3}
Sb={1,5,6,7}

Sg={4,8,9,10}

91.89
88.00
95.95

91.80
00.26
93.28

Left

Sw={4,8,9,10}
Sb={1,5,6}

Sg={0,2,3,7}

95.95
87.52
91.49

94.35
00.19
91.13

Left

Sw={4,8,9,10}
Sb={1,5}

Sg={0,2,3,6,7}

95.95
92.88
89.88

93.91
00.34
88.33

Right

Sw={4,8,9,10}
Sb={1,5,6,7}

Sg={0,2,3}

96.42
91.41
88.33

94.72
04.14
87.55

Right

Sw={1,4,10}
Sb={2,3,8,9}
Sg={0,5,6,7}

95.90
91.37
89.59

95.26
00.05
89.46

Right

Sw={1,4,10}
Sb={2,3,9}

Sg={0,5,6,7,8}

95.90
89.87
90.76

95.55
00.02
90.58

Right

Sw={2,3,9}
Sb={1,4}

Sg={0,5,6,7,8,10}

89.87
96.41
91.17

86.63
00.66
89.79



TABLE IV
F1-SCORE FOR CNN AUTOENCODER HAND GESTURE DATA SET (OF1
STANDS FOR ORIGINAL DATA SET AND TF1 STANDS FOR TRANSFORMED

DATA SET)

subject
List of
subsets OF1 TF1

1

Sw={1,2,3}
Sb={0,8,9,10,11}

Sg={4,5,6,7}

90.48
92.30
90.28

33.51
63.83

0.34

1

Sw={0,4,5,6,7}
Sb={1,2,3}

Sg={8,9,10,11}

92.63
90.40
91.14

60.45
31.98

1.93

1

Sw={8,9,10,11}
Sb={1,2,3}

Sg={0,4,5,6,7}

91.14
90.40
92.63

0.17
16.55
58.87

1

Sw={4,8,9,10}
Sb={1,5}

Sg={0,2,3,6,7}

91.14
91.48
92.29

2.73
45.01
55.24

2

Sw={1,2,3}
Sb={0,8,9,10,11}

Sg={4,5,6,7}

92.00
92.55
94.02

10.83
70.63

2.88

TABLE V
F1-SCORE FOR DEEP AUTOENCODER HAND GESTURE DATA SET (OF1
STANDS FOR ORIGINAL DATA SET AND TF1 STANDS FOR TRANSFORMED

DATA SET)

Subject
List of
subsets OF1 TF1

1

Sw={1,2,3}
Sb={0,8,9,10,11}

Sg={4,5,6,7}

91.58
91.32
90.79

83.67
65.34
84.70

1

Sw={1,8,9,10,11}
Sb={2,3}

Sg={0,4,5,6,7}

89.37
92.68
91.58

81.78
01.33
89.96

1

Sw={8,9,10,11}
Sb={1,3}

Sg={0,2,4,5,6,7}

89.50
91.58
91.58

88.01
04.38
90.58

1

Sw={8,9,10,11}
Sb={1,3}

Sg={0,2,4,5,6,7}

89.50
91.86
91.58

88.80
0.5

88.80

2

Sw={8,9,10,11}
Sb={1,3}

Sg={0,2,4,5,6,7}

92.55
92.02
93.49

89.82
01.13
91.33

2

Sw={1,3,10,11}
Sb={8,9}

Sg={0,2,4,5,6,7}

92.18
92.52
93.49

88.45
06.76
92.75

2

Sw={1,8,10,11}
Sb={2,3}

Sg={0,4,5,6,7,9}

93.40
91.46
93.42

88.56
0.18

92.95

2

Sw={1,3,8,10}
Sb={2,4,11}

Sg={0,5,6,7,9}

93.6
89.24
93.73

86.22
0.74

93.47

TABLE VI
F1-SCORE FOR LSTM AUTOENCODER HAND GESTURE DATA SET (OF1
STANDS FOR ORIGINAL DATA SET AND TF1 STANDS FOR TRANSFORMED

DATA SET)

Subject
List of
subsets OF1 TF1

1

Sw={1,2,3}
Sb={0,8,9,10,11}

Sg={4,5,6,7}

39.98
52.52
81.08

38.78
00.37
80.41

1

Sw={0,4,5,6,7}
Sb={1,2,3}

Sg={8,9,10,11}

91.64
91.86
90.83

89.33
00.33
88.33

1

Sw={8,9,10,11}
Sb={1,2,3}

Sg={0,4,5,6,7}

92.04
92.06
92.00

85.99
00.21
88.77

1

Sw={8,9,10,11}
Sb={1,3}

Sg={0,2,4,5,6,7}

90.20
91.27
91.63

89.82
01.20
88.77

2

Sw={8,9,10,11}
Sb={1,3}

Sg={0,2, 4,5,6,7}

92.55
92.02
93.49

89.82
01.13
91.33

2

Sw={1,3,10,11}
Sb={8,9}

Sg={0,4,5,6,7,9}

93.40
91.46
93.42

88.56
00.18
92.95

2

Sw={1,3,8,10}
Sb={2,4,11}

Sg={0,5,6,7,9}

93.60
89.24
93.73

86.22
00.74
93.47

2

Sw={2,3,9}
Sb={1,4}

Sg={0,5,6,7,8,10}

89.87
96.41
91.17

86.63
00.66
89.79

Finally, we plot the confusion matrix of different substitute
autoencoders of two data sets to evaluate the performance of
our model. Figure 1, 2 and 3 shows the transformed Skoda
data sets using CNN, multilayer, and LSTM as autoencoder,
respectively. The confusion matrices are for the left hand
Skoda data set with Sw={4, 8, 9, 10}, Sb={1, 5, 6, 7}, and
Sg={0, 2, 3}. For the Skoda data set, we can say that the
LSTM substitute autoencoder performs best. We can see
that the white subsets of the LSTM data set has a low false
positive rate. The white subset is the desired subset, which
will be used by the third party. Thus, we can use the LSTM
autoencoder to hide the sensitive subsets. The other two
substitute autoencoders have a very high false positive rate as
compared to LSTM. Also, by looking at the confusion matrix
of the LSTM and the original data set we can say that the
true positive rate of the white (desired) data set is almost equal.

Figure 4, 5 and 6 shows the transformed Hand gesture
data sets of CNN, multilayer, and LSTM as autoencoder,
respectively. The confusion matrices are for subject 1 data
set with Sw={8, 9, 10, 11}, Sb={1, 2, 3}, and Sg={0, 2, 4,
5, 6, 7}. For the Hand Gesture data set of Subject 1 we can
say that the LSTM substitute autoencoder performs best. We
can see that the white subsets of the LSTM data set has a
low false positive rate. The white subset is the desired subset,
which will be used by the third party. Thus, we can use the
LSTM autoencoder to hide the sensitive subsets. The other two
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Fig. 1. Confusion Matrix of CNN autoencoder of Skoda Data Set
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Fig. 2. Confusion Matrix of multilayer autoencoder of Skoda Data Set
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Fig. 3. Confusion Matrix of LSTM autoencoder of Skoda Dataste
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Fig. 4. Confusion Matrix of CNN autoencoder of Hand Gesture Data Set
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Fig. 5. Confusion Matrix of Multilayer autoencoder of Hand Gesture Data
Set

substitute autoencoders have a very high false positive rate as
compared to LSTM. Also, by looking at the confusion matrix
of the LSTM and the original data set we can see that the true
positive rate of the white (desired) data set is almost equal.

VII. CONCLUSION

Privacy preserving of time series data is a very challenging
issue especially when part of the information is private. Here,
in this paper we focused on how to hide the sensitive part of
time series data. We divided the data into three parts. The parts
are sensitive, non-sensitive and desired. The desired part will
be used for further analysis by the server. The user as well
as the server is not bothered about the non-sensitive portion.
At the same time, the user does not want the server to know
about the sensitive portion. The sensitive portion will not be
used by the server for further analysis. Thus, we substitute the
sensitive portion with the non-sensitive portion. We used the
property of denoising autoencoder. However, instead of only
using external noise to hide data, we substitute the sensitive
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Fig. 6. Confusion Matrix of LSTM autoencoder of Hand Gesture Data Set

information with non-sensitive information. After that we add
noise to the transformed sensitive information. We named the
autoencoder as substitute autoencoder.

To measure the efficacy of our model, we used three
different autoencoders: Deep autoencoder, LSTM autoencoder
and Convolutional autoencoder for our two different data sets.
We measured the F1-score for each of the three autoencoders
with both the original and the transformed data sets. The F1-
score was also analyzed with the three different subsets. We
found Skoda data set of the left hand with subsets Sw =
{4, 8, 9, 10}, Sb = {1, 5, 6}, Sg = {0, 2, 3} achieved the
best F1-score. By comparing the original F1-score with the
transformed F1-score, the black subset has been reduced from
88% to almost 0% (0.04%), while at the same time the gray
and the white subset is almost the same as the original subset.
For the right hand data set with subsets Sw = {1, 4, 10},
Sb = {2, 3, 8, 9}, Sg = {0, 5, 6, 7} resulted in a good F1-
score. The F1-score for the black subset has been reduced
from 91.37% to almost 0% (0.04%). For the Hand gesture
data set of Subject 1 with subsets Sw = {1, 2, 3}, Sb = {0,
8, 9, 10, 11}, Sg = {4, 5, 6, 7} achieved the best F1-score.
By comparing the original F1-score with the transformed F1-
score, the black subset has been reduced from 53% to 0.37,
while at the same time the gray and the white subset is almost
the same as the original subset. Subject 2 with subsets Sw =
{1, 3, 10, 11}, Sb = {8, 9}, Sg = {0, 4, 5, 6, 7, 9} resulted in
the best F1-score. The F1-score for the black subset has been
reduced from 91.46% to 0.18%. We also plotted the confusion
matrix of the three autoencoders of the left hand Skoda data
set and Subject 1 of the hand gesture data set. Overall, we see
that the LSTM performed better than the deep autoencoder,
and the convolutional autoencoder.
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