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Abstract—Epilepsy is a chronic neurological disorder. The
cause are unprovoked recurrent seizures that patients experience.
The most commonly used tool for the diagnosis of epilepsy is the
electroencephalogram (EEG). The EEG measures the electrical
activity of the brain. The patients have to be monitored as
to detect an epileptic episode early on in order to prevent
associate risks. Research in the past has used a combination
of time and frequency features for the automatic recognition
of epileptic seizures. An classification approach has been used
to automatically detect epileptic seizures. In this paper, the
epileptic seizure recognition data set is used for the investigation.
Two fusion methods, ensemble and Choquet fuzzy integral, are
compared using different deep neural network architectures.
To aid the comparison, evaluation measures such as confusion
matrix, AUC and accuracy are used in conjunction with MSE
and RMSE. The results of the experiments show that the Choquet
fuzzy integral fusion method outperforms the ensemble method.
In addition, other state-of-the-art classification methods are also
outperformed by the Choquet fuzzy integral fusion method.

I. INTRODUCTION

Epilepsy is a very common neurological disorder affecting
one in every 100 persons around the world [1]. Paroxysmal ab-
normal ultra-synchronized electrical activity can be measured
in the brain, which usually occurs suddenly when a person
has an epileptic episode. Researchers are looking to automate
the monitoring and detection of an epileptic episode such that
the patient can be made aware of early on to prevent potential
risks [2]. However, one of the challenges remains that is not
easy to detect and that is that the time frequencies of epileptic
episodes are uncertain.

Different types of sensors [3] have been used to collect
biological data from the patients’ surface such as electrocar-
diogram (ECG), electromyography (EMG) [4], motion data
[5], and electrodermography (EDG) [6]. Most of the sensors
are commonly integrated into clothing such as E-textiles [7],
capacitive sensing [8], polymer materials, such as carbon
nanotube (CNT)-polydimethylsiloxane (PDMS) [9], Ag/AgCl
electrodes [10], and micro-needle arrays [11]. The advantage
of the “wearable” sensor systems is that they can monitor the
signals of epileptic patients for long periods of time. On the
other hand, measuring brain signals can provide faster and
more usable information and are less likely to contain noisy
signals.

Given that EEG is more accuarate, many researchers have
looked at different approaches to directly measure ‘epilepsy
signals’. The different approaches include positron emission
tomography (PET), single photon emission computed tomog-
raphy (SPECT), magnetic resonance imaging (MRI), and
functional magnetic resonance imaging (fMRI) [12]. At the
point in time, most research studies make use of video-
electroencephalograms (EEGs) [13], [14]. EEG signals provide
temporal information and spatial information of the electrical
brain activity. The video-EEG technique is currently seen as
the best approach for studying epilepsy. The differentiation of
rhythmic discharges from non-stationary processes provides
challenges to the analysis of the EEG signals since the phys-
iological processes of a seizure are typically non-stationary,
dynamic, and nonlinear.

The automated way to detect EEG signals are feature
extraction and classification whereby the extracted features
can be divided into four categories: (1) statistical features, (2)
fractal dimension features, (3) entropy features, and (4) time-
frequency domain features. Different research studies have
primarily used a combination of time and frequency features
for the recognition of epileptic seizures.

The classification task to automatically detect EEG uses ma-
chine learning approaches that are mostly supervised-learning
based. In this paper, the 5-class epileptic seizure recognition
data set is investigated. In particular, two fusion methods
are compared, which are an DNN ensemble method and the
Choquet fuzzy integral fusion method.

II. RELATED WORK

A lot of related work has used the Bonn datasets [15].
For example, a neural network (NN) classification technique
was applied in the field of brain science as outlined in
[16]. Another machine learning method called support vector
machines (SVMs) was used to identify the EEG signals of
epilepsy patients showing good recognition performance [17],
[18], [14]. A modification based on the least squares support
vector machine (LS-SVM) was proposed in [19] to classify
two-class seizure and non-seizure EEG signals. The results
reported a 98.0-99.5% accuracy using the radial basis function
(RBF) kernel, and a 99.5-100% accuracy using the Morlet
kernel.



Another approach used an Ada-Boost classifier to identify
spike detection of epileptic seizures [20]. Given the implica-
tions of the no-free-lunch theorem [21], several classification
algorithms have been applied to seizure detection, including
random forests (RF), K-nearest neighbors (KNN) [22], and
Bayesian neural networks [23]. These approaches achieved ac-
curacy values ranging from 93% to 99.66%. One shortcoming
was that these accuracy results only used binary classification
and are also too time consuming for some practical clinical
applications.

A three-label classification problem was studied in [15]
whereby the distinction was made between continuous ictal
epilepsy patients, intermittent epilepsy patients, and healthy
subjects. The researchers used a SVM-based recognition sys-
tem and obtained an accuracy of 93.9%.

Related work that focuses on the data set that is being used
in this research study, the following can be listed. Researchers
use deep learning methods to predict epileptic seizures [24].
The authors used a deep learning classifier to identify the
signals that occur before and after a seizure. Afterwards, the
classifier performance was tested on data from all patients and
was compared against the performance of a random predictor.

A deep learning model with automatic learning features was
built in [25]. More specifically, a CNN (convolutional neural
network) as the deep learning method was used to train the
model. Different types of interictal epileptiform discharges
(IEDs) within the group as well as features invariant to time
differences between the IEDs were identified. Please note that
IEDs are pathological patterns of activity between seizures the
brain of patients with epilepsy create.

Authors in [26] trained deep neural networks with EEG data
for predicting seizures by simultaneously collecting spectral,
temporal and spatial information for the analysis of seizures.
Their study mostly focused on the cross-patient study of
predicting the seizure and the outcome showed that the deep
learning model generalizes well among different patients.

ITII. APPROACHES
A. Deep Neural Networks

Deep learning is a term used to describe the different
learning approaches/architecture of artificial neural networks.
The different architectures that are included in deep learn-
ing are deep neural networks (DNN), deep belief networks,
recurrent neural networks and convolutional neural networks.
These architectures have been widely applied to many different
research areas. The research areas include audio recognition,
speech recognition, natural language processing, computer vi-
sion, bioinformatics, gaming. In particular, a DNN [28] can be
described as containing an input layer, several hidden layers,
and an output layer. The DNN is trained using backpropagation
whereby the error between the actual output and the desired
output is to be minimized.

B. Ensemble

Ensemble learning was first introduced in 1979 [29] when
an ensemble system in a divide-and-conquer fashion was

applied to a feature space that was partitioned using two
or more classifiers. Another ensemble system later was in-
troduced showcasing the generalization performance whereby
similar neural network configurations can be improved using
ensembles by introducing the variance reduction property [30].
However, it was research reported in [31] that placed ensemble
systems at the center of machine learning research. The proof
was that a strong classifier can be generated by combining
weak classifiers through a procedure called boosting.

Nowadays, ensemble methods are heavily used due to
their success primarily when applied to classification tasks.
Ensemble methods train multiple learning algorithms, and thus
achieving significantly higher accuracy than a single learner
[32]. The common methods that are used are for ensemble
learning are boosting, bagging, stacking.

Boosting uses a model that was trained on data and incre-
mentally constructs new models that focus on the errors in the
classification made by the previous model, thus making incre-
mental improvements. An example of a boosting algorithm is
XGBoost [33].

Bagging on the other hand involves the training of models
based on random subsamples. Each model votes with equal
weight on the classification task. For example, Random forest
uses a bagging approach to allow the selection of a random
set of features to be used [34].

The third method referred to as stacking takes the output
of a set of models and feeds them into another algorithm that
combines them and thus making a final prediction. Any set
of base learners and combiner algorithm can be used for this.
The combiner algorithm can either use a simple or a weighted
average approach.

C. Choquet Integral

Figure 1 shows the fusion process whereby the data set
is provided to the three different DNN. Then, the fusion
is performed by taking the learned densities as well as the
classification performance of the three DNN models. The
result reports on the classification performance that is based
on unseen test set.

The Choquet integral (Chl) [35] - [38] is a well-known
parametric function used for data and information fusion.
Moreover, Chl is a generator function that is parametrized
by a fuzzy measure (FM). This FM is monotone and normal.
Once the FM has been determined the Chl turns this into a
specific aggregation operator [39].

The basic idea of a fusion algorithm is that the algorithm
should prioritize the most accurate evidence among the differ-
ent inputs however also considering the contribution any input
makes. The Choquet fuzzy integral achieves this by making
use of a non-linear weighted average of all data sources.
The defined fuzzy measure, takes the incoming evidence that
is weighted by a fuzzy measure value, and this is summed
over to produce a single confidence value. In most cases, the
Sugeno A-measure is used, which needs to be initialized for the
data source subsets. These data source subsets can be thought
of as different values of importance that represent each data
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Fig. 1. Choquet Fuzzy Integral Fusion Process

source. These values of importance are referred to as densities
and are often defined by experts or by some metric. For our
experiments, the AUC (Area Under the Curve) of ROC curves
is used as the measure. For more detailed information as well
as the equations please refer to [40].

1V. EXPERIMENTS AND RESULTS
A. Data Set Description

The Epileptic Seizure Recognition data set [41] is used for
this study. It contains 4,097 data points collected from a EEG
recording. Each data point represents the value of the EEG
recording at a particular time period. The data set contains
recordings from 500 individuals. The data was divided and
shuffled into 23 chunks whereby each chunk contains 178 data
points (features). Therefore, 23 chunks times 500 individuals
results in an overall value of 11,500 rows and 178 columns
plus the last column, which represents the class label. The
following class label are used:

o 1: Recording of seizure activity

o 2: Recording of tumor area

o 3: Recording from the healthy brain area

o 4: Recording when patient had their eyes closed
e 5: Recording when patient had their eyes open

In past research investigations, this data set was primarily
used as a binary data set where classes 2, 3, 4 and 5
were categorized as not having an epileptic seizure, versus
class 1 having an epileptic seizure. However, since binary
classification is an easier task, in this paper we are using this
data set for a multi-label classification investigation.

TABLE I
AUC AND ACCURACY RESULTS IN %

DNN1 | DNN2 | DNN3 | Ensemble | Choquet

AUC 41.29 42.07 36.93 36.93 50.72

Accuracy 61.95 57.95 64.21 63.37 89.57

TABLE 11
MSE AND RMSE RESULTS

DNN1 DNN2 DNN3 Ensemble | Choquet
MSE 0.958957 | 1.273391 | 0.988870 0.716870 | 0.392000
RMSE | 0979263 | 1.128446 | 0.994419 0.846682 | 0.626099

There are a total of 8,627 samples/rows with the following
distribution:

e Class 1: 1,735
e Class 2: 1,732
e Class 3: 1,693
e Class 4: 1,744
e Class 5: 1,726

B. Models

Figure 2 shows the three DNN models that were used for
the investigation. The three models contain three, two and four
hidden layers with a softmax function at the output.

C. Results

The three DNN models were trained first. Once this was
done, then the results from these models were applied to
obtain the ensemble model by average ranking. In a similar
fashion, the Choquet integral fusion was applied using the
three DNN models together with the learned densities to build
the classification model.

Fig. 3 shows the confusion matrices obtained from the three
DNN models. Model DNN2 seems to be best followed by
DNNI1, and DNN3 scores worst. Table I shows the results in
form of AUC and accuracy. Only comparing the three DNN
models we can see that DNN2 has the highest AUC score
with 42.07%. In terms of accuracy though DNN3 outperforms
the other two models. Surprisingly, the Ensemble method
does not achieve better results, however, the Choquet method
outperforms all by far with values of 50.72% and 89.57% for
AUC and accuracy, respectively. Table II shows the MSE and
RMSE results confirming the superior results of the Choquet
method. The confusion matrices of the Ensemble method and
the Choquet method are shown in Fig. 4.

Table III shows the results of applying standard machine
learning techniques. The accuracy results are provided for
the following approaches Support Vector Machines (SVM),
Decision Tree (DT), Logistic regression (LR), Gaussian Near-
est Neighbour (GNN), Random Forest Classifier (RFC), Ex-
tra Tree Classifier (ETC), and Gradient Boosting Classifier
(GBDT). The best AUC result was achieved by the GNN
algorithm with 59.59% followed by SVM and DTC with
57.08% and 56.01%, respectively. As for the accuracy, ETC
scored best with 69.08% followed by RC and GBC with
97.86% and 62.47%, respectively. However, Choquet method
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outperforms all the other approaches in terms of accuracy and
provides the second best value in terms of AUC.

V. CONCLUSION

In the past, the Choquet fuzzy integral fusion method
had shown very good performance applied to fused CNN
model results that were trained on image data. This paper
investigated the epileptic seizure recognition data set using a
DNN ensemble method. This ensemble method was compared
with the Choquet fuzzy integral fusion method. For this, three
different DNN methods were trained with 3, 4, and 5 hidden
layers. Afterwards, the ensemble method and the Choquet
fusion method were applied. In terms of evaluation measures,
confusion matrix, AUC, accuracy, MSE and RMSE were used.

The results show that the Choquet fuzzy integral fusion
method outperforms the DNN ensemble method as well as
other state-of-the-art classification methods. In particular, the
AUC and accuracy results with values of 50.72% and 89.57%,
respectively compared to 36.93% and 63.93% achieved by

Confusion Matrices of DNN Models

the ensemble method. Furthermore, a comparison with state-
of-the-art classification algorithms showed that the Choquet
fusion method is far superior to the best performing ML
algorithm that achieved an accuracy of 69.08%. Unfortunately,
no AUC value was provided with the accuracy result of
the comparison approaches, and thus, further analysis is not
possible.
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