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Abstract: In a high temperature environment, it is challenging to perform structural health 
monitoring (SHM), which has become a required task for many important civil structures in 
harsh environments. A SHM system in high temperature environments requires a large number of 
sensors for different data resource measurements, for example, strain and temperature. The 
accuracy of the measurement is highly dependent on the trade-off between the number of sensors 
of each type and the associated cost of the system. This paper introduces a sensor optimization 
approach based on an evolutionary strategy for the multi-objective sensor placement of structural 
health monitoring in high temperature environments. A single-bay steel frame with localized 
high temperature environment validates the multi-objective function of the evolutionary strategy. 
The variance between the theoretical and the experimental analysis was within 5 %, indicating an 
effective sensor placement optimization using the developed genetic algorithm, which can be 
further applied to general sensor optimization for SHM system applications in high temperature 
environments.  
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1. INTRODUCTION 

Structural health monitoring (SHM) is becoming popular for many important infrastructure such 
as tall buildings, long bridges, hospitals, offshore facilities, and nuclear power plants. The health 
condition of the structures can be analyzed based on collected data from sensors on structures. 
This information could help the users to allocate resources for associated maintenance and avoid 
severe fatality. However, in high temperature environments, such as in fire, the lightweight 
sensors in an SHM system would be very vulnerable to damages. 

A high temperature environment requires special sensors with associated high cost. Current 
practices of extensive redundancies of sensor placement for an SHM system in high temperature 
environments results in a high-cost and unaffordable system to be widely applied. To search for 
an affordable solution for these conditions, a SHM system needs to reduce the total number of 
sensors while maintaining an acceptable monitoring accuracy at the same time. Therefore, it 
becomes critical to apply a sensor placement optimization before the sensor installation for 
sensor location, sensor types and number (cost), and measurement accuracy.  



A sensor optimization problem, either static or dynamic, is a convex optimization [1] and it has 
been proved to be NP-hard, which could result in a long execution time depending on the 
problem size. Even with a powerful computer, the number of sensor candidates has to be 
reasonably small to get an exact solution [2,3]. Improving efficiency is needed for sensor 
optimization problems to get exact solutions [4]. Thus, instead of an exact solution, local search 
methods can be applied. For the control and damage detection of dynamic structures, either local 
information-theory-based [5-8] or information-based [9-10] sensor placement optimizations can 
be applied. These local search methods depend on optimizing control function of the fisher 
information matrix (FIM) or its variants using structural dynamic properties, such as structural 
frequency-mode shapes, strain energy, and structural curvature. These optimization methods 
emphasize either the controllability or observability of the system and are usually applied for 
placement of wireless acceleration sensors on structures. In addition, the computational 
performance of these local search approaches is suboptimal and not guaranteed to be minimum 
since these algorithms reduce the sensor number in an iterative manner. 

Global search methods can also be applied such as genetic algorithm (GA) [11-14] and swarm 
intelligence method [5]. In addition, various intelligent algorithms have also been developed as 
good tools for wireless sensor placement in a regular environment with consideration to optimize 
power consumption and signal strength, such as the monkey algorithm and glowworm swarm 
optimization algorithms [16-18].  

However, in high temperature environments, multiple sensor types will be involved such as 
strain sensors, temperature sensors, and vibration sensors, and the major task of optimization is 
to determine the optimized number of each sensor type. None of these applications consider 
more than one type of sensor for SHM application in harsh environments.  

In this paper, we introduce a new approach based on evolutionary strategy to solve the sensor 
selection problem for SHM application in high temperature environments where multiple types 
of sensors are a necessity. The developed algorithm uses a fitness function with consideration of 
the trade-off between the sensor number/type and the measurement accuracy with a weight 
factor, which can better serve as decision-making criteria.  

The organization of the remaining paper is as follows: Section 2 introduces the developed 
evolutionary strategy, which can be used for sensor optimization of general SHM systems in high 
temperature environments. Section 3 conducts a case study using a single-bay steel frame 
structure. Section 4 provides the conclusion and outlines the potential future work. 

2. EVOLUTIONARY STRATEGY-BASED SENSOR PLACEMENT OPTIMIZATION 
APPROACH	

Evolutionary strategy (ES) is a population based stochastic optimization technique. ES is based 
on ideas of adaptation and evolution, in particular focusing on the selection and mutation 
operation. Fig. 1 shows the ES approach as a flow chart. 



 

Fig. 1 Steps in Evolutionary Strategy [21] 



There are different variants of ES but the canonical version, also referred to as the (1+1) 
evolution strategy includes the following steps [19]: 

Step 1: Initialization of the population. 

Step 2: Evaluation of the population. 

Step 3: Create population with offspring parameters. 

Step 4: Calculate the solution associated with the offspring. 

Step 5: If offspring population is better than parent population, then replace parent population 
with offspring population; if not, then go to Step 3. 

Step 6: If number of generations specified has been reached then stop, otherwise go back to 
Step 3. 

The canonical algorithm was implemented and the following parameters were used: 
• Population size: 500 
• Number of generations: 5000 

The optimization function used was the cost of the temperature sensors and the strain sensors as 
follows: 

𝐶(𝑛,𝑚) = (
(∑*)∗,-(∑.)∗/	

                                                  (1) 

where ∑𝑛 is the sum of the temperature sensors based on the sensor location n, and ∑𝑚 is the 
sum of the strain sensors based on the strain sensor locations, b is the unit price of the 
temperature sensors, and c is the unit price of the strain sensors. More details regarding the cost 
function and the associated linear interpolations of the temperature and strain measurements can 
be found in [14]. 

3. CASE STUDY 

With the required measurement accuracy known, then the total number of sensors, the types of 
sensors to be applied, and the locations of the associated sensors can be optimized using the 
developed evolutionary strategy. A case study has been performed on a one-floor and one-bay 
steel frame with simulated localized high temperature. More details of the steel frame and 
temperature loading area can be found in reference [20].  

Fig. 2 shows the measurement accuracy changes with the increase number of sensors with four 
different temperatures including 212 °F (100 °C), 575 °F (300 °C), 932  °F (500 °C), and 
1292 °F (700 °C). At a temperature of 212 °F (100 °C), a measurement accuracy of 84.3 % will 
require three sensors.  



 

Fig. 2 Number of sensors vs measurement accuracy 

Table 1 shows the suggested sensor layout for the three sensors at 212 °F (100 °C) with 84.3 % 
of required measurement accuracy obtained from the evolutional strategy as discussed in Section 
2. The distance between each possible sensor node is 2 inches (5cm). 

Table 1 Suggested sensor layout with 84.3% of required measurement accuracy 

000000000000000000000000000000000000000000000000100000000000000000000000000000
000001000000000000000000000000000000000000000000000000000000000000000000001000
00000000000000 

To validate the effectiveness of the developed method for sensor placement optimization of SHM 
system in high temperature environments, laboratory experiments were performed based on the 
case study as shown in Fig. 3(b). A tube furnace made by Thermo Scientific (Model: 
Lindberg/Blue M) was used to provide a temperature change environment for validation. It had 
three temperature zones that can be programmed and operated independently, which were 
programmed to have the same temperature increase profile in this validation test. The 
temperature in the furnace was increased at a rate of 18 °F/min (10 °C/min) from 72 °F (room 
temperature, 22 °C) to 1292 °F (700 °C) by an interval of 180 °F (100 °C). At each temperature 
level, the test paused for 10 min to ensure that the temperature distribution is stable both inside 
and outside the furnace. Vertical load was applied on the top beam by the displacement-
controlled actuator of 4.6 kips (20.46 kN) to 10 kips (44.48 kN). 

To validate the effectiveness of the developed algorithm for sensor placement optimization, a 
comprehensive sensing network was applied on the steel frame for two temperature sensors and 
six strain sensors as shown in Fig. 3(a) for the detailed locations of the installed sensors. This 
validation test used sensors developed in reference to [20] for simultaneous high temperature and 
large strain measurements. The temperature sensors used long-period fiber grating (LPFG) and 
the strain sensors used movable extrinsic Fabry–Perot interferometer (EFPI) large strain sensors. 
Ceramic adhesives that can endure high temperatures up to 2012 °F (1100 °C) were used to 
attach optical sensors on the surface of the column flanges. 



Fig. 4 compares the measurement accuracy changes as simulated fire temperature increases from 
the experiments and that from the theoretic analysis obtained by the algorithm. At the 
temperature of 212 °F (100 °C), the measurement accuracy is predicted to be 84.3 % and the 
actual measurement accuracy from the experiment is 88 %. The measurement accuracy at 
1292 °F (700 °C) was expected to be 79.6 % from the training, and the measured accuracy 
through experiments is 76 %. A variance less than 5 % between the theoretical and the 
experimental analysis indicates a very effective sensor placement optimization using the 
developed algorithm. 

 

Fig. 3 Experimental sensor layout (a) and scene (b) 

 

Fig. 4 Comparison between theoretic and experimental results 

 

 



6. CONCLUSIONS AND FUTURE WORK 

This paper outlines an effective evolutionary strategy approach for sensor placement 
optimization with consideration of the tradeoff between measurement accuracy and cost of the 
system. The authors conducted a theoretic analysis to develop the algorithm followed by 
laboratory validation experiments. In high temperature environments structures will require 
multiple types of sensors with different cost consideration. The evolutionary strategy developed 
in this article can optimize the sensor placement for structural health monitoring in high 
temperature environments using a fitness function with the consideration of parameters from 
multiple types of sensors. The laboratory experiments validated the results of the developed 
algorithm for sensor placement optimization of SHM system in high temperature environments 
using the single-bay one-story steel frame case study. The sensors placement layout based on the 
developed algorithm with two temperature sensors and six strain sensors yielded a measurement 
accuracy of 76 % in a fire environment of 1292 °F (700 °C), which is very close to the expected 
value of 79.6 % obtained by the numerical analysis. The current algorithm is applicable for one-
dimension (1-D) problems. Future work will apply this method to multiple dimension problems 
such as structures in three dimensions (3-D) and include more parameters to be considered such 
as vibration and moisture if needed.  
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