
Encryption based on Neural Cryptography

Sayantica Pattanayak and Simone A. Ludwig

Department of Computer Science
North Dakota State University

Fargo, ND, USA
{sayantica.pattanayak,simone.ludwig}@ndsu.edu

Abstract. Neural network cryptography is an interesting area of re-
search in the field of computer science. This paper proposes a new model
to encrypt/decrypt a secret code using Neural Networks unlike previous
private key cryptography model that are based on theoretic number func-
tions. In the first part of the paper, we propose our model and analyze
the privacy and security of the model thereby explaining why an attacker
with a similar neural network model is unlikely to pose a threat to the
system. This proves that the model is pretty secure. In the second part
of the paper, we experiment with the neural network model using two
different ciphertexts of different length. Parameters of the network that
are tested are different learning rates, optimizers and step values. The ex-
perimental results show how to enhance the accuracy of our model even
further. Furthermore, our proposed model is more efficient and accurate
compared to other models for encryption and decryption.
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1 Introduction

Historically the major consumer of cryptography were military and intelligence
organizations. Nowadays however, cryptography is everywhere. Cryptography
has gone from an art form that dealt with secret communication for the military
to science that helps to secure systems for ordinary people all across the globe.
This also means that cryptography is now a central topic in computer science.
Cryptography is furthermore the most significant part of communication security
[1]. It maintains the confidentiality that is the core of information security using
mathematical techniques.

The confidentiality is maintained with the construction of a ciphertext (now
called encryption scheme). The ciphertext provides secret communication be-
tween two parties either by symmetric key encryption or asymetric key encryp-
tion.

Private-key or the symmetric-key encryption is a setting where two parties
share some secret information in advance. The private key encryption consists
of an encryption algorithm, Enc, and takes as input a key k and a plain text
message m and outputs a ciphertext C. It is denoted as

C = Enck(m) (1)
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The decryption algorithm, Dec, takes as input the same key k and a cipher-
text C and outputs the plain text m. It is denoted as

m = Deck(C) (2)

In contrast, the Public-key encryption or assymetric key encryption is a
setting where one party generates a pair of keys (pk,sk) called the public key
and the private key, respectively. The public key is used by the sender to encrypt
a message for the receiver; the receiver then uses the private key to decrypt
the resulting ciphertext. The commonly known RSA algorithm [2], abbreviated
after the names of the inventors, is an example of public key encryption. The
algorithm implements a public key cryptosystem whose security rests in part
of the difficulty in factoring large numbers. The algorithm also permits secure
communications to be established without the use of couriers to carry keys and
it also permits one to “sign” digitized documents.

Neural Cryptography which is a branch of cryptography is a biologically
inspired programming paradigm which enables the computer to learn from ob-
servations. In the conventional approach to programming, we tell the computer
what to do, breaking big problems up into many small ones; precisely defined
tasks that the computer can easily perform. By contrast, in a neural network
we do not tell the computer how to solve our problem. Instead, it learns from
observational data, figuring out its own solution to the problem at hand.

Automatically learning from data sounds promising. However, until 2006
we did not know how to train neural networks to surpass more traditional ap-
proaches, except for a few specialized problems. What changed in 2006 was the
discovery of techniques for learning in so-called deep neural networks. These
techniques are now known as deep learning. They have been developed further,
and today deep neural networks and deep learning achieve outstanding perfor-
mance on many important problems.

Another example of how neural cryptography is used is in voice recognition as
demonstrated in [3]. The paper proposed a technique to reliably generate a cryp-
tographic key from a user’s voice while speaking a password. The authors also
showed how their technique is sufficiently robust to enable the user to reliably
regenerate the key by uttering her password again.

Advancing these lines of work, we propose a model where a neural network
can learn to perform encryption and decryption and thereby protecting the com-
munication between two entities. We conducted different experiments on our
model in order to identify the best structure and parameters. We experimented
with our model with ciphertexts of different length and with different other pa-
rameters like network structure, learning rates, optimizers and step values. Our
findings show a way to improve the accuracy of the model.

Our paper continues as follows. Section 2 describes the related work in the
field of neural cryptography. In Section 3, our proposed model and its security
is described. Section 4 includes experiments conducted as well as the results and
findings. Finally, we conclude with the conclusion and future work (Section 5).
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2 Related Work

Until now, there has been a large number of studies concerned with the usage
of neural networks in cryptography. Neural cryptography applications were re-
searched first in [4]. The paper defined a new identification scheme which can be
used in smart cards because of small size data and easy operations. They proved
how their identification scheme is secure against the most efficient attack known
using a technique called simulated annealing.

A symmetric probabilistic encryption scheme based on the chaotic classified
properties of Hopfield neural networks was studied in [5]. The authors showed
how a discrete Hopfield Neural Network (HNN) model is favourable for neural
cryptography. The HNN is usually referred to as an associative memory network
because the stable states of the network are in the form of system attractors,
which can be used to store patterns and correct error messages by a Minimum
Hamming Distance (MHD).

Another chaotic neural networks and its VLSI architecture for digital signal
encryption and decryption was proposed in 2000 [6]. Chaotic neural networks
are used for encryption as well as for decryption because of high security, no
distortion in signal and also suitability of system integration.

Another paper proposed the basis of the Neural Key Exchange protocol [7].
Neural Key Exchange Protocol is based on the synchronization of the weights of
a Tree Parity Machine (TPM) [8] similar to the selection of chaotic oscillators
in chaos communication. In other words, the knowledge of the output does not
uniquely determine the internal representation, so the observer cannot tell which
input vector was updated. However, the Neural Key Exchange is vulnerable to
three types of attacks [9]. The attacks are Geometric attack [10], Genetic attack
[11], and probabilistic analysis [12]. These attacks can be fixed by addition of a
feedback mechanism [13].

Authors in [14] proposed an encryption key based Artificial Neural Network
(ANN). The plain text message consists of bits. Then, the bits are transmitted to
the recipient. The paper proposed a backpropagation network for their proposed
approach.

3 Our Proposed Approach

Our neural network model is based on the Backpropagation network [15]. A
Backpropagation network is used for supervised learning. The algorithm assumes
a feedforward NN architecture.

Our proposed model (Figure 1) is based on symmetric key encryption. Like
in cryptography we have Alice and Bob here also we will assume that Alice and
Bob wants to communicate secretly. To achieve this goal, Alice will create a
training set. The training set will consists of ASCII codes (decimal values) of
317 characters with their corresponding two different ciphertexts (C1 and C2).
The ciphertexts C1 and C2 are of different lengths. The ciphertexts are formed
by padding the decimal digits with a random key as shown in Figure 2.
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Fig. 1. Encryption Model based Artificial Neural Network

Fig. 2. Formation of Ciphertext

For instance, the ciphertext C1 is formed by taking a random key and padding
the ciphertext with that key. Alice will then secretly hand over the entire training
data to Bob. Both Alice and Bob will train their neural networks with their
training data. Alice will train her neural network by using the ASCII/Decimal
values as the feature vector and predicting the ciphertext. Bob on the other hand
will train his neural network by taking the ciphertext as the feature vector and
predicting the decimal value.

As Alice wants to share some secret information with Bob, she has to convert
the secret information or test message to ASCII (decimal) values. The decimal
values will be the input to the first Neural network. The first neural network will
then produce an output or a ciphertext. Afterwards, Alice will hand over the
ciphertext to Bob. Bob will use this ciphertext as an input to the second neural
network and will get the decrypted text message.
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As our proposed model is based on cryptology, we proved that our proposed
model cannot be attacked by any other adversary [16]. For instance, suppose
Eve (an adversary) wants to eavesdrop on Alice’s and Bob’s conversation. To
do this, Eve can attack the model in two ways. First, Eve can mimic the two
neural networks, however, that is impossible for Eve to do because she does not
have the training set. Secondly, Eve can randomly start guessing the ciphertexts,
however, in cryptography privacy is preserved against efficient adversaries that
run in a feasible amount of time [17]. Thus, Eve who has ‘computational power
polynomial in time’ would not be able to go through all keys if we use random
keys. For privacy, we keep on changing the key for each sets of messages so
that no adversary can guess the right key. Hence, our model is most secured to
maintain confidentiality and integrity of the data.

4 Experimental Setup and Results

We divided this section into ‘Experimental Setup’ and ‘Results’. The experimen-
tal setup is divided into the encryption setting and decryption setting. For both
the settings, we included different parameters with different ciphertexts to mea-
sure the accuracy of our model. The length of the different ciphertexts C1 and
C2 are of medium and large, respectively. The parameters are hidden network
structures, step values, learning rates and optimizers. The results include the
evaluation of the best ciphertext with the best network structure for both the
encryption and the decryption setting.

4.1 Experimental Setup

In the encryption setting we considered evaluating the performance of two dif-
ferent ciphertexts. First, we consider evaluating the performance of C1, which is
of medium length. For the evaluation we included different hidden layer network
structures and different optimizers as shown in Table 1. RMSE values are root
mean squared error values. Also, values displayed in bold are the best RMSE
values achieved with a particular setting. The optimizer listed as ‘Default’ in the
tables is the Adagrad optimizer.

In the next step since the RMSE value with the three layer hidden network
structure and with the Adam optimizer returned the best score, we increased
the step value to see how it affects the RMSE value (Table 2). We also applied
the same network structure with a step value of 3000 to different learning rates
(Table 3).

Then, we evaluated the ciphertext C2 with a hidden network structure of
[350, 350, 350] and [350, 350] as summarized in Table 4. We took the step value
as 4000 since the length of ciphertext C2 is very large.

From Table 4, we can interpret that for Ciphertext C2, the RMSE value is
best when we use the two layer network structure with the Adam optimizer and
a step value of 4000. Table 5 shows how different step values change the RMSE
values.
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Table 1. Ciphertext (C1) with different optimizers

Hidden Layers Optimizers RMSE

[350,350,350] Default 6.220

[350,350,350] Adam 0.371

[350,350,350] Adagrad 243.101

[350,350,350] Proximal 3.913

[350,350] Default 0.493

[350,350] Adam 0.455

[350,350] Adagrad 1125.941

[350,350] Proximal 16.672

Table 2. Ciphertext (C1) with different step values

Step values RMSE

1000 0.371

2000 0.341

3000 0.224

4000 0.533

Table 3. Ciphertext (C1) with different learning rate

Learning rates RMSE

0.010 0.224

0.001 0.901

0.0001 24.756

Table 4. Ciphertext (C2) with different optimizers

Hidden Layers Optimizers RMSE

[350,350,350] Default 11.804

[350,350,350] Adam 4.590

[350,350,350] Adagrad 19.976

[350,350,350] Proximal 18.762

[350,350] Default 17.743

[350,350] Adam 4.519

[350,350] Adagrad 14471.780

[350,350] Proximal 163.521
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Table 5. Ciphertext (C2) with different step values

Step values RMSE

4000 4.590

5000 16.935

6000 16.443

7000 14.309

Since we have seen that the learning rate plays a very important role in
Ciphertext C1, we experimented with C2 with different leaning rates and with
a two layer hidden network structure and the Adam optimizer (Table 6).

Table 6. Ciphertext (C2) with different learning rates

Learning rates RMSE

0.01 4.963

0.001 8.335

0.0001 148.581

For the decrypting setting, in order to decrypt the test message, which is
encrypted with the Ciphertext C1, we use different network structures with a
step value of 1000. We investigated how well the neural network can decrypt the
test message with different optimizers (Table 7).

Table 7. Ciphertext (C1) with different optimizers

Hidden Layers Optimizers RMSE

[150,150,150] Default 0.333

[150,150,150] Adam 19.743

[150,150,150] Adagrad 40.671

[150,150,150] Proximal 0.175

[150,150] Default 0.082

[150,150] Adam 111.951

[150,150] Adagrad 161.564

Then, we use the two layer hidden network structure to find if different step
values can give a better RMSE value. The output is given in Table 8. From
the table, we can say that that the default optimizer with the two layer hidden
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network we obtained the best RMSE value, so we interpret the optimizer with
different learning rates shown in Table 9.

Table 8. Ciphertext (C1) with different step values

Step values RMSE

1000 0.333

2000 0.139

3000 0.112

4000 0.144

Table 9. Ciphertext (C1) with different learning rates

Learning rates RMSE

0.01 0.175

0.001 43.976

0.0001 187.124

For decrypting the test message with Ciphertext C2, we implemented dif-
ferent hidden layer network stuctures as before with a step value of 3000. The
output is summarized in Table 10.

Table 10. Ciphertext (C2) with different optimizers

Hidden Layers Optimizers RMSE

[150,150,150] Default 0.174

[150,150,150] Adam 0.595

[150,150,150] Adagrad 17.755

[150,150,150] Proximal 0.1296

[150,150] Default 0.043

[150,150] Adam 6.981

[150,150] Adagrad 111.393

[150,150] Proximal 0.278

We implemented different step values with the two layer hidden network
structure and the default optimizer (Table 11) and different learning rates with
the same hidden layer network structure using the default optimizer (Table 12).
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Table 11. Ciphertext (C2) with different step values

Step values RMSE

3000 0.174

4000 0.232

5000 0.162

6000 0.094

Table 12. Ciphertext (C2) with different learning rates

Learning rates RMSE

0.01 0.130

0.001 4.134

0.0001 183.270

4.2 Results

We evaluated both the encryption and the decryption setting separately. From
Table 1-6, we found the best network structure among the two ciphertexts for
encrypting a message is ciphertext C1 with a hidden layer of [350, 350, 350],
learning rate 0.01, a step value of 3000 and with the Adam optimizer. From
Table 7-12, we found the best network structure among all the ciphertexts that
decrypt a test message is ciphertext C2 with a hidden layer structure of [150,
150], step value of 3000, learning rate of 0.01 and with the default optimizer.

5 Conclusion

In this paper, we reviewed several related research work done in the neural
cryptography area. In our paper, we proposed a method for both encrypting
and decrypting a ciphertext using a neural network. Our model takes decimal
values as input and converts them to ciphertext, and then again to the desired
output. We proved how the model is secured against brute force attacks thereby
preserving privacy and security.

The experiments shows how different network structures perform with dif-
ferent learning rates as well as different step values and optimizers. Also as was
shown with the experiments, the RMSE value of the training data played a vital
role. Even though we have shown that the ciphertext which is of medium length
performs best in encrypting a test message, however, we highly recommend to
use ciphertexts of large length to prevent any confidentiality leak of data. If the
ciphertext is large then it would be very difficult for an adversary to traverse
through all the keys in polynomial time.

In the future, an asymmetric key encryption based neural network should be
used to improve the integrity and confidentiality of the data. In addition, future
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work should also involve finding a neural network which can do both encryption
and decryption simultaneously.
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