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Abstract With the dramatic rise of internet users in the last decade, there has
been a massive rise in the number of daily web searches. This leads to a plethora
of data available online, which is growing by the days. A recommendation engine
leverages this massive amount of data by finding patterns of user behavior. Movie
recommendation for users is one of the most prevalent implementations. Although
it goes way back in the history of recommendation engines, collaborative filtering
is still the most predominant method when it comes to the underlying technique
implemented in recommendation engines. The main reasons behind that are its
simplicity and flexibility. However, collaborative filtering has always suffered from
the Cold-Start problem. When a new movie enters the rating platform, we do not
have any user interaction for the movie. The foundation of collaborative filtering is
based on the user-movie rating. In this paper, we have proposed a hybrid filtering
to combat this problem using the genre labeled for a new movie. The proposed
algorithm utilizes the nonlinear similarities among various movie genres and pre-
dicts the rating of a user for the new movie with the associated genres for the
movie.

Keywords First keyword - Second keyword - More Movie Recommendation
Engine - Hybrid Filtering, Genre Similarity - Cold Start - Content-based Filtering -
Collaborative Filtering

1 Introduction
The amount of available digital information as well as the number of users

on the Internet have increased dramatically of the past years. This has created
potential challenges of information overload and fast access to relevant information.
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Information retrieval systems have addressed this problem but prioritization and
personalization of information is still more or less absent in these systems. This
has increased the demand for recommender systems. Recommender systems are
information filtering systems and address the problem of information overload
by filtering information from large amounts of dynamically generated data. This
filtering is usually based on users preferences, interest, and observed behavior
about items. Given this filtering process, recommender systems have the ability
to predict whether a particular user would prefer an item based on their profile.

The recommendation systems available today can be broadly classified into
three major categories; collaborative-filtering, content-based-filtering, and hybrid
of the first two [1][2][3] [4].

Collaborative-filtering (CF) is grounded on identifying similar (nearest neigh-
bors) items or users for a new item-user pair and estimate the rating based on
a certain aggregation method. For item-based CF, similarities among the items
are calculated based on the ratings by mutual users. For user-based CF, simi-
larities among the users are calculated based on their ratings of mutual items
watched. These similarity matrices are used to identify the nearest neighbors (items
or users). Collaborative-filtering calculates the similarities among user ratings to
make predictions. This method is only purposeful when users have rated a signif-
icant number of mutual items. Additionally, the absence of content of the items
makes it impossible to match similar users unless the same items were rated by
them. For example, suppose user A liked the movie “Lord of the Rings”, and user
B liked the movie “Lord of the Rings II”. Although there is a similarity in their
preferences, collaborative-filtering will fail to match them.

Content-based-filtering has always been important in the field of recommenda-
tion engines because it addresses the Cold-Start problem [5]. Both user-user CF
and item-item CF are dependent on the user-item interaction. When a new item
is introduced to the recommendation engine, it does not have any interaction data
with the user at that point. Without existing ratings by the users, it is not possible
to find similar items, which is the foundation of item-item CF. Also, as no user has
rated the item, there is no way a recommendation can be made. Thus, addressing
this shortcoming is the foundation of user-user CF. Additionally, data sparsity is
predominant in any item review data set. Therefore, items with an insignificant
number of user ratings show inferior performance compared to the ones with a
significant number of user ratings [6][7]. However, content-based CF find similar
items based on their metadata. In the domain of movie recommendation systems,
the metadata of the items could be director, length of the movie, language, etc. [§]
proposes a content-based filtering technique where attributes are extracted from
the ratings, and this deals with data sparsity. Although it handles cold start prob-
lems to some extent, it entirely depends on the content of the items. For the sake
of simplicity, we will limit our discussion to movie recommender systems. How-
ever, this approach can be extended to any recommender systems where the items
are tagged under certain predefined categories. The disadvantages of the approach
discussed in [8] are twofold, operations cost, and quality of recommendation. From
the standpoint of operations cost, the collection of content of movies is expensive
as those are hand-engineered and require a lot of domain knowledge. With the in-
crease in the number of movies across the globe, it is becoming nearly impossible
to generate features for all those. Furthermore, the quality of the recommendation
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is entirely dependent on the quality of the feature generation process, and thus its
ability is limited in terms of expanding users’ existing preferences.

A hybrid technique of collaboration with content tackles the shortcoming of fea-
ture extraction by combining information captured by both content-based-filtering
and by collaborative-filtering. In collaboration filtering with content-user, the sim-
ilarity matrix is built using both the content of the movies as well as the rating
of movies in common. The feature extraction based on the content of the movie
is done by content-based techniques. The weights of the extracted features desig-
nate the importance of the corresponding feature to the user. Like collaborative-
filtering, the similarities between users are calculated. However, the weights of the
features are used in place of user ratings to calculate the similarity. This approach
has lots of features to calculate the similarities between users. Hence, it deals with
the issue of users having an insufficient number of rated movies. Moreover, the ex-
tracted features are capable of capturing users’ preferences outside of their usual
environment. This is a considerable uplift from content-based-filtering. However,
we still need a significant number of users that have rated a movie for the rec-
ommendation. Similar to collaborative-filtering, it is not possible to recommend a
brand-new movie unless there is a user who has already rated it.

We have witnessed an uprising popularity of releasing dubbed/translated ver-
sions along with the original spoken language of the movie [9]. This way the reach-
ability of the content overcomes the barrier of language. However, communities are
formed based on user-movie relationships. While utilizing the existing movie re-
view history, we cannot explore users’ interests across those communities. Hybrid
filtering can combine the content information and thus can overcome this barrier.
The traditional hybrid filtering methods rely on movie meta-data most of which
are isolated within those communities. We have proposed a hybrid filtering algo-
rithm to address this problem by utilizing the genre information. Additionally it
deals with cold-start problem. We have combined users’ watch history with movie
genre information to recommend movies across the above mentioned communities.
We have shown that the proposed method is capable of recommending movies in
foreign languages that were not explored by the test user yet.

The rest of the paper is organized in the following way. Section [2] discusses
the limitation of the state-of-the-art methods on cold-start scenarios and how this
paper contributes to mitigate those issues. Section [3.1] explains the algorithm with
mathematical notations and Section shows the flowchart diagrams. Section
describes the process of data preparation to simulate the cold-start scenario.
Section and [£4] show the experimental results on the MovieLens-100k data
set with various levels of data sparsity. Section [£.5] shows the experimental re-
sults on the MovieLens-25m data set. In addition, we have further improved the
hybrid filtering with nonlinear multivariate similarity metrics. The comparative
experimental results are shown in Section [£.6]

2 Related Work

Various methods have been proposed over time to build product recommen-
dation engines. Due to the variety of available data and the use cases, there is no
one-size-fits-all technique. However, most of the proposed methods can be broadly
classified into two categories, content based filtering and collaborative filtering.
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Content based filtering also includes context based filtering. They use time and
space features of the items and users [I0]. Collaborative filtering, in contrast, lever-
age the interaction among the items and the users to predict the rating of a user-
movie pair. Furthermore, collaborative filtering methods are broadly classified into
two categories, nearest neighbor based models [I1] and matrix factorization based
models [I2]. Nearest neighbor based filtering methods focus on the similar users
or items to estimate the likely rating. Matrix factorization is captures the latent
relationships between the users and the items, project that to a low-dimensional
space and compute the similarity in the reduced space [13]. The most common
matrix factorization is Singular Value Decomposition which was also used for the
winning algorithm in the Netflix Prize [I4] [I5]. Although the latter category has
gained popularity lately, the former category still dominates the industrial level
implementations. The prime reason behind this is its simplicity and intuitiveness
[16]. Due to the same reason, Nearest Neighbor based models win over more so-
phisticated models in a variety of domains. For example, prediction of remaining
useful life on degradable products have been dependent on models based on pattern
recognition models [I7]. These models are grounded on statistical estimation of the
decaying process. However, in many scenarios, nearest-neighbor based models win
over the former mentioned sophisticated models due to its simplicity [I8].

Any form of collaborative filtering suffers from groups of users known as gray
and black sheep. Unusual users with inconsistent preference compared to the other
users are referred as the Gray sheep [19]. Black sheep refers to the group of users
that have idiosyncratic tastes [20]. The time complexities of collaborative filter-
ing is linear and with the growing size of the user-movie rating data, it becomes
difficult to keep up with the runtime of these algorithms [21]. It is very common
that synonymous (or the exact same) items with different names occur in a recom-
mender system data set. Collaborative filtering fails to detect those unless users
have shown similar behavior towards rating them.

[22] has proposed a content-based filtering approach that calculates the con-
tents’ similarity. Movie genres are defined by content experts. Hence, it is more
reliable than system-generated features. Additionally, it deals with the Cold-Start
problem as similarities are calculated only based on content. It calculates the mu-
tual genre count to estimate the similarities among genres. However, it does not
consider the user rating of each genre while calculating the similarities. Addition-
ally, the experiment is performed on a test set of 10 movies, which fails to establish
the reliability of the proposed method.

[23] proposes a recommendation system based on the extracted low-level visual
features from the trailers of the movie. The authors have used visual feature ex-
traction as an alternative to the metadata of the movies. This method is dependent
on the machine-generated features, whereas genre information is far more reliable
as it is generated by domain experts. Also, the algorithm-guided feature generation
is an unstable area in computer vision. Furthermore, this approach fails to expand
users’ existing tastes as it does not consider the interaction among the high-level
components of the movie. [24] proposes a similar approach but for videos. As the
videos do not have man-made sample data (trailer for the movie), it utilizes the
whole content of the video to extract the feature. This is not feasible for movies.

[25] uses the plot summaries of the movies to generate natural language pro-
cessing based features. The authors combine the high-level meta-data information
with the low-level features generated by the plot summaries. Similar to [23], it
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fails to expand users’ existing preferences. Also, the bag of words approach can be
totally misleading while defining the theme of the movie.

[26] calculates the relative importance of genres to each user from the review
matrix. The weighted average importance of the user of the corresponding tagged
genres of a movie is estimated as the predicted rating of that user-movie pair.
This approach restricts the prediction of users’ existing preferences as it does
not consider the similarities among the genres. For example, if a user has rated
‘Batman’ as 5, and he has watched only one sci-fi movie, the relative importance
of ‘action’ genre for the user becomes 5. Whereas, in reality it could be the case
that he rated it high because it was an ‘action’ film. This model would incorrectly
recommend all the sci-fi movies to the user.

[27] proposes a content-based recommendation system that leverages six high-
level features, such as the origin of the movie, which is a major limitation of
this approach. Most of the real-time training data sets contain selection bias.
For example, if a user has mostly watched Russian movies, this model will most
likely limit the predictions within Russian movies whereas, in today’s movie world
streaming platforms generate audio in multiple languages. Features like the genre
is more universal and does not have this limitation.

[28] extracts the movie interest of users from user tweets. Although the authors
aim to solve a different problem with an entirely different type of data set, we
share the same foundation in terms of the approach, which is the recognition of
user interest.

[29] proposes a recommendation technique for users through mobile devices.
The system leverages the GPS information from the movie search operations on
mobile devices. The primary pitfall of this approach is the assumption of user be-
havior. We should not assume the inference of user touchpoints based on intuition.
If a user has searched a movie on a mobile device, then it does not necessarily show
his interest if he did not watch the movie.

The method implemented in [30] leverages the generated features of the genre.
It enriches the diversity of the recommendation as it utilizes genre data. This paper
attempts to define genre diversity using a Binomial framework, which is different
from our problem statement. However, it shows the robustness of genre data in
terms of enhancing the diversity of the recommendation.

The cold start problem can also be addressed using the similarities among the
users based on their interactions on social networks [3I]. This approach tries to
fill the gap in the rating data to tackle the data sparsity. However, it is heavily
dependent on an external data source, which is extremely difficult to stitch with
the rating data set. In an ideal world where all the users from various platforms
are centrally connected with network governance, this method can prove to be
effective. Although, that is far from feasible to apply on a real-life recommendation
platform.

[32] proposes an algorithm to deal with cold start problem. They calculate the
latent features with deep neural network using the users data (when available),
genre information and movie title. However, there are various limitations on this
method. For Movie Lens 1m data set, this algorithm is dependent on the user
demographic information. User demographic information is not readily available
for many new recommendation systems. Hence, this method is limited to the
recommender systems that are able to capture the user demographic information.
For example, MovieLens-100k does not have user information. Hence, it is limited
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to the users that allow their demographic information to the system. Even with
the provided demographic, the reliability of the information is often questionable.
Hence, we do not rely on the user demographic data. Secondly, the simulation of
the cold-start data is done based on the acquisition of the user. This paper has
considered the users acquired in the last year. We have simulated the data in such
a way that the users have at most 20 ratings. For example, in Movie Lens 100k
data set, if we consider the ratings from 2003, which is the latest year on the
data set, only 878 ratings are coming from the users having less than 21 ratings.
Whereas there are 3348 ratings posted in 2003. Our data preparation simulates
the cold-start problem closer to this work due to higher data sparsity.

[33] proposes an interesting ensemble method where various components of
the rating systems are ensemble with dynamically generated weights. This work
achieves an impressive error rate in MovieLens-100k data set. However, it does not
establish the method to address the problem of cold-start. The data preparation
included the whole data set; there was no cold-start simulation. We have captured
the latent associations among the genres and combine that with the collabora-
tive filtering and provided the proof of concept how it outperforms the standard
algorithms in the simulated data set.

[34] provides a list of techniques that leverage the Internet Of Things (IoT).
These recommender systems utilize activities collected from various other plat-
forms that are interconnected. Although these approaches are very effective for per-
sonalized recommendations, they are limited to availability of the interconnected
IoT applications data. Another set of recommender systems such as ISoTrust-
Seq [35] leverage social media data. [36] provides a great list of such techniques.
However, like the IoT based approaches, these methods are also limited to the
availability of the external data sources.

Collaborative Filtering methods have always been vulnerable to ’shilling at-
tacks’. In these scenarios, fake users spoil recommendation systems’ predictions
by systematically injecting fake profiles and reviews. [37] proposes a method that
tackles this problem to some extent by factoring in the objective and subjective
trust among the users.

In a nutshell, we are proposing a hybrid filtering method where the genre
information of the movies is used with the association among the users in terms of
similar movies. Unlike many other contents of movies such as extracted features
from the media, genre data is very easy to gather. Additionally, genre information
is reliable as it is not machine-generated. This proposed algorithm will be effective
in dealing with the Cold-Start problem. The major contribution of this algorithm
is to expand users’ preferences across genres. We have implemented the algorithm
using the ML-100k data set and performed robust experiments to validate the
effectiveness of the proposed method.

3 Approach and Methodology
3.1 Algorithm Description

In this section, the methodology of the proposed algorithms for predicting
movie ratings based on genre information will be explained. Let us start by de-
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noting the entities involved in this experiment, in particular we have three major
components.

{U1,Ua,...,Up} is the set of users that contribute to the review data set.
{Mi,Ma,..., My} is the set of movies that are utilized for rating by the set
of users mentioned earlier. Each of the movies belongs to multiple genres, and
{G1,G2,,G1s} is the set of genres. The rating data set is:

Rer(i,j)

where r(i, ) denotes the rating of user U; for M;.

We first calculate the average rating of each user for each genre. This is calcu-
lated from the user-movie rating matrix combined with the movie-genre adjacency
matrix.

3.1.1 Genre-Average Hybrid Filtering - GAHF

Genre-average hybrid filtering (GAHF) is applicable to the test cases where
the movie has at least one genre that has been tagged by the user. For example,
if (Ua, Mp) is the test case where we are trying to predict the rating of a movie
denoted by M, by the user denoted by U,. If M} is tagged under genres G1...;, and
under the assumption that U, has rated all the tagged genres, then the predicted
rating is calculated as:

%

Z r(a,n)

n=1

where r(a,n) denotes the average ratings for movies of genre G, by user U,.

3.1.2 Genre-Similarity Hybrid Filtering - GSHF

We propose genre-similarity hybrid filtering (GSHF) that utilizes the similari-
ties between every pair of genres and overcomes the limitation of of the test user
having to rate at least one genre of the test-case. In other words, it is capable of
working on the use cases where the user has never rated a genre that the movies
fall under. We calculate the genre-genre similarity matrix from the user-genre aver-
age rating matrix. This provides the similarity between every pair of genres based
on the average rating of every user to the genres. We have considered various
similarity metrics which will be discussed in Section

We will utilize the genre-genre similarity matrix to predict the rating for a user-
movie pair where the user has never rated the genres of the movie. For example, if
(Uay, Mp) is the test case for which we are predicting the rating of movie denoted
by Mp by the user denoted by U,. If M, is tagged under genres G12,...;, the
predicted rating is calculated as:

Z r(a).stm(n)

where, r(a) is the average-rank vector by U, for the genres except the ones in G;
and sim(n) is the similarity vector of Gy, with the corresponding genres.
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3.2 Process Flowchart Diagrams

Figure[l]is a process flowchart that visually describes the data preparation for
our experiments to simulate the cold-start situation. And, Figure [2] is a process
flowchart that explains the overview of the execution of the model on a new test
case.

Rating Data

}

Filter the ratings by the
users that have more than
20 ratings only

Create the rating
matrixes for every pair
of genres where the
mutual users occupy the
same indexes in both the
matrixes.

Calculate the multivariate similarities
l between every pair of matrixes

User-Genre average rating
matrix

Genre-Genre similarity
matrix

Fig. 1 Process Flowchart for the data preparation for cold-start simulation
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Test Case
(user_id, movie_id)

|

Find the tagged genres

Genre-Genre similarity
matrix

Compute the similarity
vectors to all genres for
each tagged genre

User-Genre average rating
matrix

Compute the dot
product of the weighted
rating vectors and
normalize

}

Fig. 2 Process Flowchart for rating prediction for a test case

3.3 Multivariate Similarity Metrics

Canonical Correlation (CC) capture the linear relationship between two mul-
tivariate data sets. It finds the linear combinations of each set of the variables
that yield the maximum correlation between them. In other words, we construct
a weighted average of the variables, which is called variate. Then, we calculate the
Pearson Correlation between the variates.

For example, let us suppose, X and Y are the ratings vectors by the mutual
set of the users between GG; and G, respectively. These set of vectors are denoted
as,

X = (X17...,Xp)/ and Y = (Yl,...,yq)/

To find the Canonical Correlations, we need to construct the linear combina-
tions:

Z =uiY1 +u2Yo+ - +upYp

and
W =wv1X1+v2X2+ - +v4Xq
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such that rzw is a maximum.

To calculate Canonical Correlation, we start with the covariance matrix be-
tween X and Y.

Let S be XY covariance matrix denoted as,

_ Syy SyI
5= [Sxy Sm}

Next, we partition the covariance matrix as below,

A=S,SysSm Suy

Eigenvalues of A are canonical correlations squared, therefore

Re = \/pi = pi

As mentioned earlier, Canonical Correlations can capture the linear relation-
ships between two multivariate data sets. There are a few non-linear algorithms
that capture the nonlinear relationships. Both Nearest Neighbor Intersection (NNT)
[38] and Cluster Overlap (CO) [39] work well on these tasks.

We are going to implement NNI to substitute CC in Section to portray
how the performance improves with this similarity metric.

NNI calculates the nearest neighbors based on the average rating vectors for
each user based on both the genres and calculates the mutual nearest neighbors
to estimate the similarity between them. First, we identify the of the nearest
neighbors of an instance m in both data sets. Every neighbor has a probability of
knn/(N —1) to be in the subset defined by ,, and a probability of knn /(N —1) to
be in the subset that’s defined by y.,. Aggregated, the expegted number of mutual

neighbors between any pair of random neighborhoods is :,“jl.
The number of mutual observations of neighborhoods is aggregated over every

possible instances m yields in a sum of

. kan
Nexpect = I (ZUZ ﬁUzy|) = N_1

m

if column vectors X and Y are unrelated.

Post aggregation, the expected sums are big enough for a Poisson distribution
to be approximated by a Gaussian distribution. We used Poisson distribution for
comparison. After the approximation, we collect the z-score, which is how many
standard deviations above the mean.

For the CO algorithm, we count the number of overlapping data points between
every pair of clusters, each generated on different data sets. And, we compare that
with the expected number of overlaps with random chance.

cXller
(Wncﬂ_ l J|>

Kclust Kclust

X’=>

i=1 j=1

N

[ernieid
N
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where C#X and CJY are the members of clusters X; and Y; respectively, i.e. |C* N

cXl oY
C’]Y | is the number of observations in the overlap of the two clusters, and w
is its expected overlap between the two independent clusters. We can consider
the x? distribution to calculate the probabilities which show the strength of the
relationship.

4 Experimental Setup and Results
4.1 data sets

We have used the MovieLens data set [40] to build a proof of concept and to
evaluate our proposed approach. It has various versions of the data set which are
identified by the size of the rating matrix. We have considered the most commonly
used version, which is also the smallest, ML-100k. Additionally, we have used the
largest version, ML-25ml, to establish the robustness of the algorithm. ML-100k
has 100,000 ratings where 1,682 movies are rated by 943 users. Each rating is
an integer ranging from 1 to 5. It has 93% sparsity, which means if we create
an adjacency matrix on the user-movie combinations, then 93% of the cells will
be empty. ML-25ml consists of 25 million ratings as the suffix identifies. It has
162,541 users and 59,047 movies. The ratings range from 1 to 5, but with an
interval of 0.5.

Table [1) shows the data based on the user id, movie id, and the rating.

Table 1 Movielens-100K rating data set

userld | movield | rating
877 381 4

815 602 3

94 431 4

416 875 2

500 182 2

4.2 Data Preparation for Experiments

The prime motivation of this paper is to predict the rating of movies that have
never (or very few ratings) been rated by the user population. This is a classic
problem in the world of recommendation engines and is referred to as the ‘Cold
Start’ problem. We intend to utilize the genre information of the movie to address
this issue. We build the training and testing data set in such a way that reflects
this situation and can establish the effectiveness of our algorithm.

We have calculated the average rating of each genre for the user. For each
user-movie combination, we calculate the average of average ratings of each tagged
genre; it is zero if a user has not rated a certain genre. The rationale for the same
comes from the ‘Missing Not At Random’ (MNAR), which states that the missing
values indicate non-ignorable non-responses.

We have executed two sets of experiments. First, we executed experiments to
establish the Genre similarity based hybrid filtering with comparative results for
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Memory based Collaborative filtering methods. We prepared the data in such a
way that the test items appears on the train data set less than a certain frequency.
We calculated the similarity matrix between every pair of genres and estimated the
rating of a movie considering the average rating of each genre by the users combin-
ing the similarities among them. The second experiments expand the comparison
results on the performance of the algorithm using various similarity metrics.

4.2.1 ML-100k Data Set

We performed the experiments on the subsets where there are limited number
of ratings for each user or item. In one experiment, we prepared the data in a
way that the users have rated less than a certain number of movies. In the other
experiment, we prepared the data in a way that the movies have been rated by
less than a certain number of users.

Furthermore, for the subset, we have split the data into train and test buckets
with random sampling with a 9:1 ratio. The data set is large enough for random
sampling to maintain similar distributions over various strata. For the interest of
future reference, we are going to call these frequencies as per-user-rating-count
and per-item-rating-count, respectively.

Table [2] shows the size of the training data for various per-user-rating counts
and per-item-rating counts.

Table 2 Sizes of training and testing split for various frequency counts

Frequency | Train size for per-user-rating | Train size for per-item-rating
30 4257 7446
40 7299 10476
50 10376 14656

As we simulate the cold-start environment, we are purposefully introducing
data sparsity, which results in test cases where the user has no rating in the train
split. We have dropped such cases from the test case. If it is a movie that has
never been rated in the train split, we can utilize the genre similarities to come up
with a prediction, which is however not the case for a new user. Also, collaborative
filtering algorithms fail to predict the rating if there is no mutual users or items.
For those cases, we have used the overall average rating of the movie.

Table |3 shows the percentage of data for various ratings on both the training
and the testing splits. This split is shown for the subset where the users have less
than 50 ratings.

Table 3 Percentage share on data for various ratings on training and testing split for per-
user-rating-count 50

Rating | Training split | Testing split
1 5.8% 6.1%
2 10.9% 9.4%
3 24.3% 26.8%
4 34.6% 36.3%
5 24.3% 22.4%
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Table 4] shows the percentage of data for various ratings on both the training
and the testing splits. This split is shown for the subset where the items have
less than 50 ratings. For the interest of future reference, we are going to call this
frequency as per-item-rating-count.

Table 4 Percentage of various ratings on training and testing split for per-item-rating-count
50

Rating | Training split | Testing split
1 14.6% 14.6%
2 17.4% 18.4%
3 31.1% 29.1%
4 25.3% 25.3%
5 11.6% 11.4%

4.2.2 ML-25ml Data Set

We have performed similar experiments on a subset of the ML-25m data set.
We have filtered in the users that have 20 ratings in the full data set. From 4,611
such users, we have randomly picked 500 for our experiments. Table [5| shows the
percentage of the data for each rating value before the random sampling, training
split after random sampling, and the testing split. We can see that the distribution
is maintained after the random sampling.

Table 5 Percentage of ratings on training and testing split for 25m data set

Rating | Before random Sampling | Training split | Testing split
0.5 3.2% 2.9% 4.5%
1 4.2% 4.2% 4.0%
1.5 2.6% 2.4% 3.2%
2 6.8% 6.9% 5.6%
2.5 4.6% 4.6% 3.5%
3 19.1% 18.8% 18.1%
3.5 8.3% 8.6% 8.3%
4 23.6% 24.5% 24.0%
4.5 7.8% 7.5% 7.5%
5 19.8% 19.9% 20.8%

4.3 Experiments on Per-User-Rating-Counts
4.8.1 Comparative Performance

To measure the performance on the test split, the Mean Absolute Error (MAE)
and the Mean Squared Error (MSE) are calculated. The results are collected with
three decimal places. We have compared the performance of the proposed algo-
rithm with both Item-Item Collaborative Filtering (ITHF) and User-User Collab-
orative Filtering (UUCF). Furthermore, as we are working with genre informa-
tion, we have also reported the performance of Genre-Average Hybrid Filtering

(GAHF).
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Figure [3] and Figure [4] show the comparative performance of the Item-Item
Collaborative Filtering (ITHF), User-User Collaborative Filtering (UUCF), Genre-
Average Hybrid Filtering (GAHF), and Genre-Similarity Hybrid Filtering (GSHF)
for various settings of the data sets.

08

06 Filtering Algorithm 125 Filtering Algorithm
IICF IiCF

MAE
MSE

WUCF 100 WCF
W GAHF . GAHF
04 = GSHF 075 = GSHF
050
02
025
00- 000
30 0 50 30 40 50

User Frequency User Frequency

Fig. 3 MAE for various per-user-rating countsFig. 4 MSE for various per-user-rating count

We observe a downward trend in loss for UUCF as the per-user-ratings-count
increases. As the per-user-ratings-count increases, there are more mutual users
for a test-movie to leverage which leads to lower loss. GSHF, on the other hand,
maintain a steady performance across the per-user-ratings-count. It establishes
that GSHF is not impacted by the sparsity of the data as much, which makes it a
perfect choice for the movie recommendations under the cold-start scenario.

Additionally, we observe the loss of each of the algorithms are much higher
than the reported loss on the ML-100k data set by the state-of-the-art algorithms.
This is, for obvious reasons, due to the cold-start simulation. We are going to
continue with the data preparation for the cold-start simulation in this paper.

4.8.2 Genre Count

Table [6] shows how the prediction loss of GSHF varies over the genre counts.
We observe that the prediction losses are stable across the various genre counts.
It proves the robustness of the performance of the algorithm. Although GSHF
leverages the genre information, it holds equal power while dealing with the cases
with small number of tagged genres. The similarities of the tagged genres with
other genres suffice the information.

Table 6 Prediction loss for various genre counts of movies

genre count | MAE | MSE

1 0.845 | 1.318
2 0.803 | 1.177
3 0.749 | 1.046
4 0.882 1.48
5 0.5 0.5
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We observe interesting values for MAE and MSE for genre count 5. Once
investigated further, there were only 4 such test cases and the predictions are
shown in Table

Table 7 Predictions for the cases with 5 tagged genres

Actual rating | Predicted rating
3 4.0
5 4.0
4 4.0
3 3.0

4.3.8 Confusion Matriz

Figure [5] shows how the prediction values are distributed around the actual
ratings. The actual labels are given on the y-axis whereas the predicted values are
given on the x-axis. The first diagonal contains the correct predictions. Based on
the figure we can see that most of the ratings revolve around rating class 3 and 4.
Also note that a rating of 1.0 was never predicted.

- - 0.085 0
~N - 0.067 0.038
™ - 0.013 0.019
|
&
< - 0.017 0.049
n - 0.019 0.074
3 0.025 0.043
L} |
20 50

Predicted

Fig. 5 Heatmap of the confusion matrix

4.4 Experiments on Per-Item-Rating-Counts
4.4.1 Comparative Performance

For the next experiments we prepared the data in a way that the items have
received less than a certain number of ratings. Figure [f] and Figure [7] show the
comparative performance of the algorithms for the data preparation with various
per-item-rating counts.
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Fig. 6 MAE for various per-item-rating countsFig. 7 MSE for various per-item-rating count

Unlike Figure [3]and Figure [d] Figure [6] and Figure [7] do not show any trend on
the performance of UUHF or ITHF with per-item-ratings-count. However, GSHF
shows stability and superiority in performance.

4.4.2 Genre Count

Table |8 shows how the prediction loss of GSHF varies over the genre counts.

Table 8 Prediction loss various genre counts of movies

genre count | MAE | MSE
1 0.809 | 1.298
2 0.826 | 1.329
3 0.912 | 1.574
4 0.895 | 1.421
5 1 1

Similar to the Table [f} MAE and MSE for genre count 5 are also interesting
in Table [8] Once investigated further, there were only 2 such test cases and the
predictions are shown in Table [J]

Table 9 Predictions for the cases with 5 tagged genres

Actual rating | Predicted rating
3 4.0
4 3.0

4.4.8 Confusion Matriz

Figure [§] shows how the prediction values are distributed around the actual
ratings. The matrix indicates that most ratings predict rating value 3 as indicated
by the color shading.
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Fig. 8 Heatmap of the confusion matrix

4.5 Experiments on 25ml Data Set
4.5.1 Comparative Performance

Table [10| shows the comparative performance on all 4 algorithms for the afore-
mentioned subset of the ML-25m data set. We can clearly see that both GAHF
and GSHF have smaller MAE and MSE values compared to the comparison ap-
proaches UUCF and IICF. GSHF outperforms GAHF with the lowest values of
0.792 and 1.104 for MAE and MSE, respectively.

Table 10 Comparative prediction loss on ML-25ml

Algorithm | MAE | MSE
UUCF 1.119 | 1.987
IICF 1.029 | 1.962
GAHF 0.847 | 1.266
GSHF 0.792 | 1.104

4.5.2 Genre-count

Table shows how the prediction loss varies over the genre counts. We can
observe a sharp decrease in loss for genre-count higher than 4. There are only 9
cases with genre-count 6, and 6 cases with genre-count 7. We can explain this
decrease in loss as a bias. However, there are 45 cases with genre-count 5, which
is large enough to eliminate the random chance of the loss to be low.



18 Arighna Roy, Simone A. Ludwig

Table 11 Prediction loss various genre counts of movies on ML-25ml

genre count | MAE | MSE
1 0.838 1.139
2 0.754 | 1.096
3 0.797 | 1.133
4 0.835 1.169
5 0.767 | 0.839
6 0.611 | 0.472
7 0.667 | 0.667

4.5.8 Confusion Matriz

Figure 0] shows how the prediction values are distributed around the actual
ratings. The ratings are shown in 0.5 increments. Given the color shading we can
see that most of the predicted ratings range from 2.5 to 4.0.

w JEENGEE o oS 01 0 005 0 O
S- 0 0043 0043 007 017 013 o o
m- 0 0 00690007 0034 0034 0
S- 0 00320016 011 070032 o
- 0 0 0041 012 0082 002 0
To- 0 0 0018 0018 ) [¥EJ 0061 o
§&5- 0 o 0 0042005 0
o- 0 0 000470019 0028 015 CEMl 013 0019
w- 0 0 0014 0014 012 014 018 0014
S- 0 0 000550016 0.038 0.071 036 023 ¥
< 0045000670013 0044 0091 316 WP 012 003

] ] '
05 10 15 20 25 30 35 40 45 50
Predicted

Fig. 9 Heatmap of the confusion matrix

4.6 Similarity of GSHF
4.6.1 Experiments on ML-100k Data Set

In this section, we will compare the performance of GSHF with two different
similarity metrics, namely NNI and CCA. As we discussed in Section [3:3] NNI is
capable of capturing the non-linear relationships between two data sets, which is
not the case for CCA. Figure [f] and Figure [7] show how the prediction loss varies
for GSHF with CCA or NNI at various per-user-rating-count values. We observe a
slightly downward trend in the loss as the per-user-rating-count increases, although
there is no monotonous trend. GSHF consistently performs better (lower loss) with
NNI than with CCA as the similarity metric.
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Figure [12] and Figure [13] show how the prediction loss varies for GSHF with
CCA or NNI at various per-movie-genre-count for ML-100k. CCA performs slightly
better than NNI if we consider the MAE for genre-count 4.
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Fig. 12 MAE for various genre counts Fig. 13 MSE for various genre counts

4.6.2 Experiments on ML-25ml data set

We performed similar experiments on the 25ml data set. However, for the
interest of execution time, we only performed the experiment for per-user-rating-
count as 50. Figure[T4 and Figure[I5|show how the prediction loss varies for GSHF
with CCA or NNI at various per-movie-genre-count for ML-25ml.
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5 Conclusion and Future Work

We have proposed a hybrid filtering technique that considers movie genres as
the content of the movies. Genre is a reliable content measure on the movie as
it is generated by the content experts such as directors. This algorithm is not
sensitive to Cold-Start problems or limitations on users’ preferences. We have
applied this approach to the Movie Lens data sets for various use cases. It has
consistently shown superior performance over the existing approach to establish
its effectiveness. For instance, on the subset of ML-25ml data set, where each
user has less than 20 ratings, GAHF and GSHF show a 18% and 23% lower MAE
respectively than that of item-item collaborative filtering. Furthermore, the current
existing approaches fail to expand users’ current current preference. The proposed
method can help an online streaming service to grow by expanding users’ interests.
Additionally, we have plugged in a similarity metric that is able to capture the
nonlinear relationship between genres and reported the superiority in effectiveness.

As part of future work, we aim to apply our approach to various domains within
the product rating platform. For example, we can implement this algorithm for
online retail stores with product categories where users rate the products online.
Furthermore, we can include additional reliable content on the movie or users such
as demographic data to enhance the Genre based Collaborative Filtering model.
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