A Performance Analysis of Dimensionality Reduction
Algorithms in Machine Learning Models for Cancer
Prediction

Abstract

Developments in technology facilitate the use of machine learning methods in
medical fields. In cancer research, the combination of machine learning tools and
gene expression data has proven its ability to detect cancer patients. However,
processing such high-dimensional and complex data is still a challenge. This pa-
per analyzed the impact different dimensionality reduction techniques have on
machine learning models used for cancer prediction. Dimensionality reduction
techniques such as principal component analysis (PCA), PCA with a kernel, and
autoencoder were utilized to reduce the dimensionality of the RNA sequencing
data. Two machine learning classifiers, namely neural network and support vec-
tor machine, were trained and tested using the original, dimensionally reduced,
and cancer-relevant data. Various metrics, such as accuracy, precision, recall, F-
Measure, receiver operating characteristic curve, and area under the curve, were
used to assess the performance of classifiers. The results showed that dimension-
ality reduction positively affects the performance of the classifiers. Additionally,
autoencoder performed better than PCA and PCA with a kernal. These findings
indicate the potential of dimensionality reduction in improving the analytical re-
sults of machine learning classification models on high-dimensional data.

Keywords: Machine Learning, Cancer Prediction, Dimensionality Reduction,
RNA-seq Expression, Prostate Cancer

1. Introduction

Prostate cancer is indicated by the National Cancer Institute (NCI) as the most
common and second deadliest cancer among men in the United States [1]. Ac-
cording to the American Cancer Society (ACS), 1 in 8 men will be diagnosed
with prostate cancer during his entire lifetime, whereas 1 in 41 men will die from
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the disease [2]. Generally, cancers in the early stage are easier to treat. There-
fore, early detection of prostate cancer is the key to improving patients recovery
chances.

The requirement for early diagnosis leads to the use of new technologies such
as machine learning (ML) and gene expression data. Comparing to clinical data,
gene expression data is different because of its high dimensionality and complex-
ity. Current ML techniques are unable to process such data accurately. In order
to obtain promising results, many researchers choose to perform gene selection to
reduce the data size before using ML tools. However, gene selection techniques
ignore the biological and statistical relevances between genes [3]. Dimensionality
reduction is another way to reduce the data size. By creating a representation of
the original data in a lower dimension, dimensionality reduction techniques are
able to keep the relevances between genes while reducing the dimensionality and
complexity of the data. Since the majority of cancer research so far used gene se-
lection, we want to explore the feasibility of dimensionality reduction techniques
in cancer research like predicting prostate cancer patients.

In this study, gene expression data of prostate cancer patients, along with the
clinical variable “Gleason score,” were utilized as predictors, and the sample type
(cancer / non-cancer) was used as the target variable. Three dimensionality reduc-
tion approaches, representing three types of dimensionality reduction methods,
namely linear methods, sublinear methods and nonlinear methods, were combined
with two ML classifiers to form six dimensionality reduction-based ML classifi-
cation techniques. The results using such techniques were compared with ones
using the original data, and data with only cancer-relevant genes and the clinical
variable.

The contributions of this study are listed as follows:
e More than 20,000 genes were considered in this study.

e Principal component analysis (PCA) and autoencoder were used to study
the performance of linear, sublinear and nonlinear dimentionality reduction
techniques.

e Neural network (NN) and support vector machine (SVM) were used in this
study to examine the performance of both linear and nonlinear ML classifi-
cation models.



e Hyperparameter searches were conducted to obtain the optimal ML models.

e 10-Fold cross-validation was used during each hyperparameter search to
ensure the generalizability of models.

e Prediction models were tested on original, reduced and cancer-relevant data
to observe the impact of dimensionality reduction techniques on perfor-
mance of models.

This paper consists of five sections following the introduction. Related works
are discussed in Section 2. Section 3 delineates the methodology, including data
characteristics, dimensionality reduction techniques, imbalance treatment, ML
techniques for classification, model construction, and performance measures. The
environmental setup and results are shown and discussed in Section 4. Section
5 is our discussion section. Finally, Section 6 summarizes this paper, where we
conclude our study and suggest potential future research directions.

2. Related Work

Gene expression techniques such as RNA sequencing have become a vital tool
in cancer research and therapy. Developments in RNA sequencing technologies
significantly improved the effectiveness of RNA-seq data in cancer research, espe-
cially in fields such as cancer biomarker identification, cancer evolution analysis,
and personalized medicine [4]. In addition, several studies used RNA-seq data for
early cancer diagnosis, subtype classification, and cell analysis [5][6][7][8].

Machine learning (ML) allows computers to learn and make predictions for
unknown data. ML is usually categorized under data science, which describes
“the systematic study of the organization, properties, and data analysis” [9]. ML
techniques can be classified into two divisions - supervised and unsupervised.
Classification is a supervised learning technique with the goal of predicting a fi-
nite set of categorical classes without an explicit order [10]. ML is a powerful tool
that allows users to predict future events using data about past or current events
and discover relationships between inputs and desired outputs that cannot be de-
tected by humans [11]. A few recognized classification techniques are decision
tree, Naive Bayes, neural networkand support vector machine. In recent years,
ensemble techniques such as random forest and XGBoost have been proven su-
perior to traditional methods because of their scaling ability and interpretability
[10][12][13]. In the medical field, ML has become widely adopted by researchers



as a technique to detect various types of diseases. Techniques such as decision
tree, Naive Bayes and random forest were used by researchers to detect heart dis-
ease and kidney disease [14][15][16], while support vector machine was used to
detect coronary artery disease and cardiovascular disease [17][18]. Researchers
also applied ensemble techniques such as bagged decision tree and XGboost to
detect diabetes [19][20]. Although neural network is also used to detect diseases,
it is usually used on tasks that require imaging data. Researchers applied convo-
lutional neural network, a type of neural network that specializes in image clas-
sification, to predict Alzheimer’s disease and Parkinson’s disease [21][22][23].
These papers utilized various ML techniques to detect different types of diseases
accurately. However, unlike other diseases, high-dimensional data like RNA-Seq
is widely used in cancer research. Processing such data still poses a challenge
to ML techniques. A common way to solve this issue is to utilize data reduction
before applying ML.

Data reduction is needed to handle high dimensional data efficiently. Feature
selection and dimensionality reduction are two popular data reduction techniques.
Feature selection reduces the data size by removing irrelevant features. Generally,
feature selection techniques are divided into supervised category and unsuper-
vised category. Supervised data selection such as SHapley Additive exPlanations
(SHAP) algorithm use the target variable(s) to remove irrelevant variables. Un-
supervised data selection such as univariate feature selection generally rely on
statistical methods to remove redundant features. Feature selection techniques are
widely used in ML tasks such as classification, regression, and clustering [24]. In
ML-related cancer research, feature selection is proven to be able to improve an-
alytical results by removing unnecessary genes [25][26]. However, unsupervised
feature selection methods are not reliable because the possibility of removing rel-
evant features or selecting irrelevant features [27]. In contrary, dimensionality re-
duction techniques compress input data to obtain a representation of it in a lower
dimension. A widely used dimensionality reduction technique in cancer research
is the principal component analysis (PCA). Authors in [28] and [29] applied PCA
to reduce data size and obtained strong analytical results. Another dimensionality
reduction technique is the autoencoder. Autoencoder (AE) was utilized to reduce
data size and extract functional genes by authors in [30][31][32]. Feature selection
seems to be the preferred data reduction choice for most researchers. However,
we want to explore how incorporating dimensionality reduction methods would
change the performance of ML models in this paper.



3. Materials and Methods

This study examined the impact dimensionality reduction techniques have on
prostate cancer prediction. The methodology we used include the following 5
stages: data gathering, data preprocessing and separation, model construction,
model training, and model evaluation. Fig. 1 provides an overview of the work-
flow of the model.
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Figure 1: Model Overview.

3.1. Data Description

We obtained RNA-seq data and clinical information of prostate cancer patients
from the National Cancer Institute Genomic Data Commons (GDC). Logy(x+ 1)
normalized illumina Hi-Seq RNA sequencing data was merged with clinical vari-
ables retrieved from the GDC. RNA-seq and clinical data were merged together
based on their corresponding sample IDs. Samples without RNA-seq information
were removed. The merged data set consisted of 550 samples, 497 of which were
primary tumor samples (cancer patients), and 52 of which were solid tissue stan-
dard samples (non-cancer individuals). The only one metastatic tumor sample was
considered as a cancer patient in this study. Thus, cancer samples counted were
498, and non-cancer samples counted were 52. All 20,531 genes and the clinical
variable “Gleason score” were assessed as predictors of tissue types (cancer or
non-cancer).

3.2. Data Preprocessing

Data preprocessing has been recognized as a fundamental stage of any ML
model [33]. Dimensionality reduction, the main focus of this paper, is also con-
sidered as a data preprocessing technique. The data preprocessing techniques we
implemented will be discussed in this section.



3.2.1. Dimensionality Reduction Techniques

The main focus of this study was the impact dimensionality reduction tech-
niques have on the performance of prostate cancer prediction. Dimensionality re-
duction is the process of transforming high-dimensional data into a low-dimension
space while maintaining the integrity of the original data. The advantages dimen-
sionality reduction offers include performance boost, reduction in computation
time, and computational resource requirements. In this study, we chose three
different dimensionality reduction techniques representing different approaches.
They were PCA, PCA with a kernel function, and autoencoder.

Principal component analysis is a widely used dimensionality reduction tech-
nique. PCA reduces the dimension of input data by projecting it onto a smaller
space through linear operations including the calculation of the covariance matrix
of the given data set, the calculation of the eigenvectors and corresponding eigen-
values from the covarience matrix, and the ranking and selection of eigenvectors
based on eigenvalues. The selected eigenvectors are the principal components.
The maximum number of principal components cannot exceed the original di-
mension [34].

However, PCA can only be implemented on continuous data because it relies
on the linear relationship between each dimension. This limits its usefulness on
high dimensional nominal data or complex data with nominal features. Imple-
mentation of kernels such as radial basis function (RBF) were introduced to solve
this limitation [35]. In this study, both PCA and RBF-PCA were used to reduce
the prostate cancer data set to a lower dimension. The number of principal com-
ponents was set to 250 as it provided 90% explained variance. Explained variance
is a measure that is used to show the discrepancy between a reduced data set and
its original data. Higher percentages of explained variance indicates a stronger
strength of association between them. It also means that predictions made based
on them will be better [36].

Autoencoder is a neural network that is designed to compress and reconstruct
input data. Similar to a neural network, an autoencoder also consists of layers of
nodes. An autoencoder can be divided into an encoder and a decoder. The en-
coder takes in an input vector and “press” it to a latent layer in a lower dimension.
The decoder tries to reconstruct the original input from the compressed represen-
tation produced by the encoder. Different from a neural network, the label of an



autoencoder during its training stage is the input vector itself. Due to this feature,
autoencoder is sometimes described as a self-learning algorithm. Autoencoders
can extract both linear and nonlinear relationships embedded in the input data it-
self. The stack-by-stack dimensionality reduction method used by autoencoders
also reduces loss of information [32][37].

In this study, the autoencoder used consisted of 5 hidden layers, including the
latent layer. The structure of the autoencoder is shown in Fig. 2. The dimension of
the latent layer was set to 250, the same as the number of principal components.
The loss function we used during the training of the autoencoder was the mean
squared error (MSE). After training, the loss of information for the autoencoder
was 0.5 in term of MSE. Because the focus of this paper was to study how re-
ducing the dimension of data would impact the performance of cancer prediction,
although the autoencoder was trained with both an encoder and a decoder, only
the encoder was used after training.

Hidden Layer Hidden Layer

Input Hidden Layer Hidden Layer N
(550 nodes) 1 (5000 nodes)

Layer > (5000 nodes) “| 1550 nodes)

¥

Latent Layer Output Layer

v

v

h

Encoder Decoder

Figure 2: Structure of the autoencoder.

Comparing both techniques, PCA has some advantages over autoencoder in
terms of real-world usage. Because autoencoder is a form of neural network, it
requires training before applying. This could cause problems to users who don’t
have access to high performance computers. PCA, on the other hand, can be
applied to a given data set without training. This feature allows users with less ca-
pable computers to improve the performance of classifiers by reducing the dimen-
sion of a given data set. However, the performance difference between nonlinear
techniques like autoencoder and linear ones like PCA is currently unclear.

3.2.2. Oversampling

To offset potential bias the model could have toward the majority class, which
in this case was the cancer class, the training set of each group was oversampled to
artificially increase the number of non-cancer samples [38]. The synthetic minor-
ity over-sampling technique (SMOTE) was used in this study. SMOTE randomly
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generates new minority samples by creating new samples around existing minority
samples. New samples are located between two existing samples to prevent new
samples being exact copies of existing samples but also not too different from
them [39]. Comparing to other oversampling techniques, SMOTE works better
with continuous data [40].

3.3. Classification Techniques

In ML, classification is a typical task and has been widely used in various
application domains [41]. The objective of the classification model is to predict
qualitative or categorical outputs which assume values in a finite set of classes
(e.g., Yes, No or Red, Green, Blue, etc.) without an explicit order [10]. Cancer
prediction can be treated as a classification task because it involves classifying
patients according to whether they may have cancer or not. In this study, Neu-
ral network (NN) and support vector machine (SVM) were used as classification
models.

3.3.1. Neural Network

Neural network is a stack of layers of nodes. Each node, apart from ones in the
input layer, is connected to all nodes in the previous layer and has a weight associ-
ated to it. An activation function is also attached to each node in all layers except
the input layer. The activation of a node depends on the result of its activation
function, which is calculated using the weighted sum of all nodes in the previous
layer. During the training process, the network learns by adjusting nodes weights
to correctly predict the label of the input tuples. NN can discover the nonlinear
relationships between inputs and outputs. However, NN takes longer to train and
is computationally more expensive [42][34].

Being a parametric method, selecting the optimal hyperparameters is required
to maximize the performance of NN. Some important hyperparameters include:
number of layers, number of nodes in a layer, activation function and learning
rate. Sometimes a dropout rate is also attached to each hidden layer. Dropout is
the process to increase the generalizability of a network by artificially deactivating
some nodes during the training process [43]. Because little is known about how
to calculate the optimal values of these hyperparameters, random search was used
to find the optimal values. The list of searched hyperparameters and the searched
range are shown in Table 1. The optimal values of each hyperparameter are listed
in Table 3 in the result section.



Hyperparameter Search Range

Number of Layers (Max: 5, Min: 1)

Number of Nodes Per Layer (Max: 1/2 of previous layer?, Min: 1/2 of Max)
Activation Function (Sigmoid, RELU, ELU, Swish, Tanh)

Learning Rate (0.0005, 0.001, 0.0015)

Dropout Rate (Max: 0.3, Min: 0.1)

Table 1: Searched NN Hyperparameters.

“Max in the first layer of NN for original set was set to 1/6 of the previous layer due to limitation
on computational resource.

3.3.2. Support Vector Machine

Support vector machine (SVM) is a ML algorithm for both linear and nonlin-
ear data. SVM maps the input data to a higher dimension where linear separation
is feasible. Within the new dimension, it searches for the linear optimal hyper-
plane, a decision boundary that divides samples into two classes using support
vectors. SVM is considered highly accurate and less likely to overfit. SVM also
can produce a compact description of the learned model. However, SVM suffers
from slow training time [34][11].

SVM natively only works with linearly separable data. For nonlinear separa-
ble data sets, kernels can be applied to SVM models by creating a feature space
that consists of observations of original samples and performing classification in
the feature space [44]. SVM is sensitive to kernel choice. Thus, a grid search
was implemented to find the best kernel for a given data set. The list of searched
kernels is shown in Table 2. The optimal kernels are listed in Table 3 in the result
section.

Hyperparameter Search Range
Kernel (Linear, Poly, RBF, Sigmoid)

Table 2: Searched SVM Hyperparameters.

3.4. Model Construction

The detailed structure of the model that are shown in Fig. 1 is illustrated in
Fig. 3 and Fig. 4. Fig. 3 covers the data preprocessing and separation stage, while
Fig. 4 covers the classification stage, which includes model construction, training,
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and evaluation stages.

In the data preprocessing stage, the cancer data gathered from the GDC was
used to generate the 5 input data sets. One set was not modified, denoted as the
original set, while the other four sets were modified using different techniques. An
autoencoder was used to dimensionally reduce the original data to 250 dimensions
to generate the autoencoder set. The PCA set was generated by applying PCA to
the original data. Similarly, the RBF-PCA set was generated by applying PCA
with RBF kernel to the original data. Both PCA and RBF-PCA sets contained
250 principal components. The cancer-relevant set, denoted as the CR set, con-
tained only the gleason score and 36 genes that are relevant to prostate cancer [45].

The input data sets were then divided into train sets and test sets through a
stratified split to ensure both cancer and non-cancer samples are presented. The
ratio between samples in a train set and a test set was 80:20. The train sets were
oversampled using SMOTE to artificially increase the number of non-cancer sam-
ples before being used in the classification stage. The test sets were not oversam-
pled to simulate real-world data. The train sets and test sets were then sent to the
classification stage.

Original Set
v l_ -l ¥
Autoencoder Set PCA Set REF-PCA Set CR Set
¢ Y v V¥ vlv
B0% l_ Stratified Split _l 20%
Train Set Test Set

v
Owersampled

h
FY

Classification Stage

Figure 3: Data Preprocessing Stage.

In the classification stage, the train sets were first used for searching the op-
timal hyperparameters of both classification techniques. Because we only had
around 400 samples in each train set, 10-fold cross-validation was used during
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searching to ensure all samples went through the model, thus to offset the model’s
potential bias towards certain samples caused by using small size data set.

After the optimal hyperparameters were found, they were used to compile the
classification models. The train sets were then used to train the compiled mod-
els. The performance of the trained models were assessed based on the metrics
in Section 3.5 using the test sets. The train-test process was repeated 10 times
to ensure the generalizability of the results. After finishing 10 iterations of this
process, the mean value of each metric was calculated and exported together as
the performance of the model.
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Figure 4: Classification Stage.

3.5. Performance Measures

Several measures were used to evaluate the performance of the classification
models, including accuracy, precision, recall, F-Measure, receiver operating char-
acteristic (ROC) curve, and Area Under Curve (AUC).

Accuracy indicates the ratio of correct predictions over all examined samples.
Precision measures the ratio of correctly predicted positive samples over all pre-
dicted positive samples. Recall measures the ratio of correctly predicted positive
samples over all positive samples. F-Measure represents the harmonic mean be-
tween precision and recall. ROC curve consists of two axes, one indicates the true
positive rate (TPR), the other indicates the false positive rate (FPR). AUC shows
the area under the ROC curve. The formulas of the performance measures are
shown below.

TP+TN
TP+FP+FN+TN
TP
TP+FP

Accuracy:

Precision:
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TP
TP+FN
2 x Precision * Recall

Recall:

F-Measure: —
Precision + Recall
TPR: — L
TP+ FN
FP
FPR: ——
FP+TN
np* Ny

Here, TP denotes the number of correctly predicted positive samples, TN de-
notes the number of correctly predicted negative samples, F'P denotes the number
of incorrectly predicted positive samples, and FFN denotes the number of incor-
rectly predicted negative samples. For AUC, S, denotes the sum of the ranks of
all positive samples, whereas n,, and n, denote the number of positive and nega-
tive samples respectively [46][47].

The values of all metrics, apart from ROC, range from 0.0 to 1.0. In most
metrics, values above 0.9 are considered outstanding, between 0.7 and 0.9 are
considered acceptable, and below (0.7 are considered undesirable. In a classifi-
cation problem, an AUC value of 1.0 suggests perfect prediction, 0.5 suggests
random prediction, and any value less than 0.5 suggests poor prediction [10]. A
value of 0.5 for AUC indicates that the corresponding ROC curve will fall on the
diagonal line. A ROC curve above the diagonal line shows the model’s ability to
distinguish different classes [48].

All metrics were used to examine the performance of the trained models. In
addition, F-Measure was also used during the hyperparameter search.

4. Results

4.1. Environmental Setup

We carried out our analysis on Penn States ROAR supercomputer clusters
(ROAR) and a third-party cloud-based environment called vast.ai. The compu-
tational node on ROAR ran on Intel(R) Xeon(R) Processor @ 2.8 GHz. It pro-
vided a RAM of size 256 GB. The virtual machine on vast.ai ran on AMD Ryzen
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5 3600X Processor @ 3.6 Ghz and NVIDIA(R) Titan RTX Graphics Processing
Unit (GPU) @ 1770 MHz and frame buffer of size 24 GB. It provided a RAM of
size 32 GB. Our analysis was implemented using Python 3.8.3. The Scikit learn
1.0.1 was used for implementing SVM classification model, grid search, ROC plot
and AUC score. Matplotlib 3.5.1 was used to export ROC plots. Tensorflow 2.8.0
was used for the implementation of neural network. Keras-tuner 1.1.0 was used
for the implementation of random search for neural network models. Imbalanced-
learn 0.9.0 was used for the implementation of SMOTE oversampling technique.
Packages on both environments were of the same version to ensure consistency.

4.2. Optimal Hyperparameters

We set the search algorithm to search 100 sets of NN hyperparameters ran-
domly. Only the kernel choice was searched for SVM, and the grid search was
utilized to ensure every kernel was used during searching. The model’s F-Measure
score was used to determine optimal hyperparameters. The optimal hyperparam-
eters of both NN and SVM for each input set are shown in Table 3 based on the
searched criteria depicted earlier in Table 1 and Table 2.
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Hyperparameter Original Set Autoencoder Set PCA Set RBF-PCA Set CR Set

Learning Rate 0.0005 0.0015 0.0005 0.001 0.0015
Number of Layers 5 2 4 4 2
Layer 1 Nodes 2982 94 94 110 17
Layer 1 Dropout Rate 0.14 0.18 0.14 0.14 0.26
Layer 1 Activation Swish Swish Swish Swish RELU
Layer 2 Nodes 951 39 31 55 4
Layer 2 Dropout Rate  0.22 0.18 0.26 0.14 0.18
Layer 2 Activation ELU Tanh Tanh Sigmoid ELU
Layer 3 Nodes 803 15 23

Layer 3 Dropout Rate 0.3 0.14 0.14

Layer 3 Activation ELU Tanh Sigmoid

Layer 4 Nodes 245 15 7

Layer 4 Dropout Rate  0.18 n/a 0.26 0.14 n/a
Layer 4 Activation ELU Tanh RELU

Layer 5 Nodes 202

Layer 5 Dropout Rate 0.1 n/a n/a

Layer 5 Activation Swish

(a) Optimal NN Hyperparameters.

Hyperparameter Original Set Autoencoder Set PCA Set RBF-PCA Set CR Set
Kernel Linear Linear Linear Linear Poly

(b) Optimal SVM Hyperparameters

Table 3: Optimal Hyperparameters.

4.3. Results of Models

The results of each trained classification model of each input set are shown
from Table 4 to Table 8. Comparing Table 5 to Table 7 with Table 4, we can see
that the performance of the classification models increased significantly when us-
ing dimensionally reduced data sets, especially when we look at their AUC scores.
The reason for this is that dimensionality reduction techniques project the original
data onto a lower dimensional space. By reducing the number of dimensions, the
relationships between each dimension become less complex. Thus, discovering
relationships between input data and desired output labels becomes easier, which
in turn increases the performance of the classification models that rely on these
relationships.

Classification Model Accuracy Precision Recall F-Measure AUC
NN 0.944 0.979 0.962 0.970 0.785
SVM 0.955 0.970 0.980 0.975 0.885

Table 4: Performance of models on original set
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As shown in Table 4, SVM had overall the best performance on the CR set,
scoring higher than NN in all metrics but precision.

Classification Model Accuracy Precision Recall F-Measure AUC
NN 0.978 0.986 0.990 0.988 0.943
SVM 0.970 0.980 0.987 0.983 0.925

Table 5: Performance of models on Autoencoder set

Classification Model Accuracy Precision Recall F-Measure AUC
NN 0.966 0.982 0.980 0.981 0.891
SVM 0.965 0.981 0.980 0.981 0.891

Table 6: Performance of models on PCA set

Classification Model Accuracy Precision Recall F-Measure AUC
NN 0.944 0.956 0.982  0.969 0.888
SVM 0.964 0.970 0.990 0.980 0.935

Table 7: Performance of models on RBF-PCA set

Comparing Table 5, 6 and 7, we can see that, of all the three dimensionality
reduction techniques used, the autoencoder provided the best result. We think
this is because PCA, even with a kernel, relies on the linear relationship between
each dimension, whereas autoencoder can extract nonlinear relationships. By ex-
amining these tables, it seems that NN acheived better performance than SVM
on data sets reduced by nonlinear dimensionality reduction methods like autoen-
coder, while SVM provided nearly as good or better performance on data sets
reduced by linear dimensionality reduction methods like PCA.

Classification Model Accuracy Precision Recall F-Measure AUC
NN 0.935 0.980 0.950  0.965 0.730
SVM 0.902 0.943 0.949 0.946 0.690

Table 8: Performance of models on CR set

As shown in Table 8, NN had the best score in all metrics on the CR set. Com-
paring Table 8 with Table 4, we can see that the performance of the classification
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models was worse when using only cancer-relevant genes. We think this is be-
cause apart from these identified prostate cancer-relevant genes, there are more
genes that are relevant to prostate cancer to some degrees.

The ROC curve of each trained classification model of each input set is shown
in Fig. 5 to Fig. 9.
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Figure 5: Original set ROC Curve.

As shown in Figure 5, we can see that SVM performed stably, while the per-
formance of NN varied a lot. Although 7 out of 10 iterations of NN showed the
same or better performance than SVM, the other 3 iterations showed really bad
performance. This could be a result of overfitting during training processes.
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Figure 7: PCA set ROC Curve.
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Figure 8: RBF-PCA set ROC Curve.

Comparing Figure 6, 7 and 8, we can see that autoencoder provided the best
performance. We think this is because autoencoder is able to produce a reduced
data set that maintains the original nonlinear relationships between features. We
can also see that the performance of RBF-PCA, when paired with SVM, was com-
parable to autoencoder. We think this is because RBF-PCA can produce linearly
separable data sets, which SVM prefers. Additionaly, when comparing these fig-
ures with Figure 5, we can see that none of all classifiers showed really bad per-
formance. We believe this is because dimensionality reduction techniques can
reduce the complexity of data, thus can reduce the possibility of overfitting during
classification processes.

18



NN ROC Curve SVM ROC Curve

0.8 0.8

o
o

" —— Run 1 (area = 0.675)
¥ Run 2 (area = 0.675)
P4 —— Run 3 (area = 0.725)
e —— Run 4 (area = 0.720)
—— Run 5 (area = 0.675)
— Run 6 (area = 0.675)
Run 7 (area = 0.675)
~—— Run 8 (area = 0.675)
Run 9 (area = 0.675)

—— Run 10 (area = 0.725)

Run 1 (area = 0.735)
7 Run 2 (area = 0.740)

4 —— Run 3 (area = 0.740)
—— Run 4 (area = 0.745)

—— Run 5 (area = 0.740)

— Run 6 (area = 0.735)

Run 7 (area = 0.735) 0.2

—— Run 8 (area = 0.745)

Run 9 (area = 0.740)

— Run 10 (area = 0.645) 0.0

°
=
True positive rate

True positive rate

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.‘0
False positive rate False positive rate

(a) NN ROC (b) SVM ROC

Figure 9: CR set ROC Curve.

Comparing Figure 9 with other figures, we can see that the performance of
classifiers using only cancer-relevant features were a lot worse than ones using
all features or reduced features. We believe this is a result of excluding other
undiscovered relevant features.

5. Discussion

In this study, we investigated the performance of three types of dimensionality
reduction methods on ML models used for prostate cancer prediction. Based on
the results, we see that cancer prediction models performed better on dimension-
ally reduced data sets. This implies that dimensionality reduction can increase
performance of ML models when using high dimensional data. Additionally, we
see that autoencoder provided greater performance increase over PCA and RBF-
PCA. This implies that nonlinear dimensionality reduction methods like autoen-
coder provide greater performance boost over linear and sublinear ones on high
dimensional continuous data such as gene expression data. Furthermore, we see
that our cancer prediction models performed better when we applied all predictors
instead of only cancer relevant ones. This implies that there are more genes that
contribute to predictions apart from the 36 cancer relevant genes.

We analyzed the performance of our models using 6 types of metrics. Be-
cause our data was highly imbalanced, with 1 to 10 ratio between non-cancer
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samples and cancer samples, relying solely on accuracy to measure the perfor-
mance was unreliable since a model could achieve high validation accuracy by
simply predicting every sample to be a cancer sample. To fix this problem, apart
from using SMOTE to generate new non-cancer samples, we also included other
metrics that can reflect the performance of models even when using imbalanced
data. Since our objective was to predict patients with prostate cancer, we chose
precision, which measures the ratio of correctly predicted positive samples over
all predicted positive ones, and recall, which measures the ratio of correctly pre-
dicted positive samples over all positive ones. We also included the F-measure,
the score of which is only high when both precision and recall are high. Addi-
tionally, we included ROC curves and AUC scores. We believe that the inclusion
of these three metrics provided an explicit presentation of the performance of our
models.

Despite what we had done so far, this study still has some limitations. First, we
only investigated three dimensionality reduction algorithms. Although we believe
that the algorithms we chose are representative of three types of dimensional-
ity reduction techniques, we will explore other algorithms in our future studies.
Second, although our ML models showed high performance in predicting can-
cer patients, such data-driven cancer prediction techniques will be affected by the
collection time of data. This could impact the practicality of using ML cancer
prediction models in the real world. In our future studies, we will collaborate with
medical professionals to test our models in a real clinical scenario.

6. Conclusion and Future Work

Prostate cancer is the most common and second deadliest cancer among men
in the United States. Damages caused by this cancer can be reduced to a mini-
mum if it is detected and treated at its early stage. Due to the high dimensionality
of RNA-seq data, current ML techniques could not handle them accurately and
efficiently. Feature selection and dimensionality reduction are implemented to re-
duce the complexity and increase the performance of ML models of such data.
The main focus of this paper was to analyze the impact dimensionality reduction
methods have on ML models used to detect prostate cancer. This study showed
that incorporating dimensionality reduction techniques into ML models can sig-
nificantly increase their performance. Additionally, the autoencoder performed
better for this particular data set because it can extract the nonlinear relationships
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from a given data set.

In this study, we examined the impact dimensionality reduction techniques
have on the performance of ML models. Future studies will include their impact
on running time and computational resource usage. In addition, we will conduct
an investigation comparing the impact dimensionality reduction techniques and
feature selection methods have on similar data sets.
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