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Abstract

Nowadays, the amount of data that has been collected or generated in many
sectors has been growing exponentially because of the rapid development of
technologies such as the Internet of Things (IoT). Additionally, the nature of this
data is imbalanced. The need for extracting valuable information for decision
support from this data poses a challenge to the scientific community to find a
solution to cope with large imbalanced data. In previous work, our cost-sensitive
differential evolution classification algorithm showed efficient performance for
handling highly imbalanced data sets. However, our algorithm shows inefficient
performance when applied to big data sets, thus lacking to scale with data size
increases. In this paper, we design and implement a parallel version of our
cost-sensitive differential evolution classifier using the Apache Spark framework
(SCDE). The aim is to handle large and binary imbalanced data. The main
idea of the algorithm is to find the optimal centroid for each target label using
differential evolution by minimizing the total misclassification cost and then
assign unlabeled data points to the closest centroid. Our experiments include
a real data set that is based on intrusion detection in order to evaluate our
algorithm’s scalability and performance. The experimental results show that
SCDE efficiently handles imbalanced binary data and scales very well with data
size increases. Moreover, the speedup and scaleup results that are obtained by
SCDE are close to linear.

Keywords: Differential Evolution, Classification, Cost-Sensitive, Apache
Spark, Imbalanced Data Set, Big Data Analytics, Intrusion Detection

1. Introduction

Data classification is a supervised learning task which aims to analyze histor-
ical data by discovering hidden relationships between features and class labels
in order to classify future data. The classification task starts by splitting a
data set into two data sets, training and testing data set. One machine learning
(ML) algorithm is usually applied to the training data set to discover the hidden
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relationships in order to create a prediction model. After that, the prediction
model is applied to instances of the testing data set to predict the outcomes [1].

In various real-life applications such as Biomedical, Intrusion Detection Sys-
tem, and Credit Card Fraud, the data is typically imbalanced where the number
of instances that belong to one class label (minority class) is significantly lower
compared to another class label (majority class). Furthermore, in some circum-
stances the misclassification cost of the minority class is much larger than the
misclassification cost of another class [2]. For example, in an intrusion detec-
tion system, undetected attacks are much more serious and costly than detecting
normal behavior as an attack. During the last decades, the researchers proposed
various approaches to cope with imbalanced data which can be mainly classified
into two groups [3],[4]:

• Data-level approach: In this approach, the data firstly goes through pre-
processing to balance the distribution of class labels using sampling meth-
ods such as Over-Sampling and Under-Sampling before applying an ML
algorithm.

• Algorithm-level approach: The tradition ML algorithm is modified to
tackle imbalanced data.

Evolutionary Algorithms (EAs) are stochastic optimization algorithms that
imitate the biological evolution theory. EAs are based on the population which
consists of individuals that represent a candidate solution. The idea of EAs is
to find the best solution by applying the principle of “survival of the fittest”
to generate a new population. During the last decades, researchers proposed
various algorithms based on this theory such as Differential Evolution (DE).
DE is one of the most popular EAs, which was proposed by Storn and Price
in 1997 [5]. DE is mainly inspired by the Genetic Algorithm (GA) with the
difference of generating new offspring. DE showed itself as a simple and powerful
algorithm for solving real-world optimization problems in continuous spaces [6].
Furthermore, several variants of the original DE algorithm have been proposed
to improve the performance of DE [7],[8].

With the rapid development of technology, the collected or generated data
has been growing exponentially. Furthermore, the characteristics of this data;
variety, velocity, and complexity, are the significant challenges that researchers
face. Recently, many big data frameworks have been proposed to handle big data
and its characteristics such as Apache Spark. Apache Spark is an in-memory
computing big data framework that runs on a cluster of nodes, which was ini-
tiated and implemented by a research team from the University of California-
Berkeley in 2009 [9]. Apache Spark addresses the major drawback of the Hadoop
Map-Reduce framework [10] which is the overhead due to disk I/O operations
that are needed to write an intermediate result in a shared file system dur-
ing running a Map and Reduce job by distributing the data across a cluster
of nodes and keeping it in memory as long as necessary. Moreover, Apache
Spark overcomes the shortcoming of Hadoop MapReduce for handling iterative
and interactive jobs [11]. Furthermore, Apache Spark is more efficient for han-
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dling the iterative and interactive job and runs 100 times faster than Hadoop
Map-Reduce for various applications [11].

The Resilient Distributed Dataset (RDD) is an immutable collection of data
sets (objects) distributed across a high-performance cluster of nodes in a fault-
tolerant manner. RDD is created to load an external data set from a shared file
system such as HDFS or to parallelize a group of objects in the driver program.
The driver program is responsible for creating a directed acyclic graph (DAG)
which is a logical execution plan for RDD. The Spark engine uses the DAG
to recover any failure RDDs while running the application. Besides, the driver
program negotiates with the cluster manager to allocate the resources and run
the executors on the worker nodes. After the cluster manager registers the
executors to the driver program, the driver program sends the tasks to the
executors for parallel processing [11],[12],[13].

Apache Spark provides two types of operations that can be performed on the
RDD, which are a transformation and an action. The transformation operation
is used to create a new RDD from an existing RDD using pre-defined functions
such as Map and MapToPair. On the contrary, the action operation is used
to compute a result by running a computation job on the RDD such as reduce
and count, and the result can be returned to the driver program or written on
a shared file system. The transformation operations on the RDD are executed
lazily, which means that the transformations on the RDD are only executed
when a Spark application triggeres an action operation on the RDD. Moreover,
Apache Spark supports two types of a shared variable instead of a shared global
memory, which are Broadcast and Accumulator. The broadcast variable is a
read-only variable that is created by the driver program and is distributed to
the executors to be used during the running task. The Accumulator variable is
a write-only variable, which aggregates values from the executors [11],[12],[13].

In [14], we proposed a cost-sensitive differential evolution classification al-
gorithm to tackle imbalanced binary data sets. We introduced a new objective
function by minimizing the misclassification cost instead of the misclassification
error to address the inefficient performance of the current variants of the dif-
ferential evolution classification algorithm [15, 16] when applied to imbalanced
binary data sets. The proposed algorithm was tested using several cancer data
sets (imbalanced binary data sets) and the experimental results showed that the
proposed algorithm’s performance outperformed the performance of the current
variants of the differential evolution classification algorithm in terms of Area
Under Curve (AUC) and G-mean. Moreover, the performance of our algorithm
is competitive compared to the performance of five cost-sensitive classification
algorithms concerning AUC and G-mean. However, all differential evolution
classification algorithms shows inefficient performance when applied to big data
sets and thus lacks to scale with data size increases. In this paper, we propose
a parallel cost-sensitive differential evolution classification algorithm based on
Apache Spark, which is further referred to as SCDE. The idea of SCDE is to
find the optimal centroid of each class label in a training data set by minimizing
the total misclassification cost. The aim of the algorithm is to handle binary
imbalanced data sets and take advantage of Apache Spark to work on massive
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data sets to achieve high performance and scalability. To the best of our knowl-
edge, this is the first work that implements a nature-inspired based classification
algorithm using Spark to handle large binary imbalanced data.

The remainder of this paper is organized as follows: Section 2 provides an
overview of existing works in parallel data mining algorithms using big data
frameworks. Section 3 illustrates our proposed approach - SCDE. Section 4
describes the data set and preprocessing. In Section 5, we present the scalability
and performance analysis of SCDE. Finally, Section 6 presents our conclusions
and future work.

2. Related Work

Recently, designing and implementing scalable solutions for traditional ML
algorithms or data mining algorithms that are based on optimization methods
have received recent attention from the scientific community. In particular, the
inefficiency of these algorithms for handling and analyzing big data in order
to extract valuable information is investigated. The researchers have proposed
a scalable solution to accommodate the rapid growth of data and run these
algorithms in a suitable time using a high-performance cluster of nodes [17].
In this section, we will start presenting the existing parallel solutions of these
algorithms based on a big data framework. Additionally, the parallel implemen-
tation of the optimization methods are also described.

In [18], the authors proposed a parallel version of DE using the MapReduce
(MR) paradigm in order to improve the running time of the optimization method
when solving a large-scale problem. In this work, the fitness evaluation is carried
out through the Map and Reduce phases. Nevertheless, the experimental results
showed that the exhaustive I/O disk operations during the shuffling and sorting
phases are reducing the parallelization performance. Two variant parallelization
approaches of DE based on Apache Spark, a master-slave and an island-based,
have been proposed in [19] to overcome the drawback of the previous work. The
master-slave and island-based approaches were experimented on the AWS cloud
using synthetic and real biology-inspired benchmarks. The results revealed that
both approaches show good scalability with increasing numbers of nodes. Other
works related to the parallel implementation of the optimization method can be
found in [20],[21],[22],[23].

The authors in [24] proposed a parallel implementation of the DE cluster-
ing algorithm using the MapReduce framework. DE clustering is carried out
through three levels. First, a MapReduce job is launched to carry out the mu-
tation and crossover operations for generating new offspring. Then, the current
population and offsprings are evaluated using the fitness function by running
the MapReduce job. After that, the selection operation is performed to im-
prove the current population. The proposed approach was tested using 18 real
gene expression data sets, and the experimental results achieved by the pro-
posed approach are found to be more reliable compared to K-means and PSO
MapReduce.
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A Spark-based clustering algorithm using particle swarm optimization (S-
PSO) was proposed in [25]. In this work, a new strategy was introduced to
improve the quality of the clustering by running the k-means algorithm in the
final stage. S-PSO runs through repeated three steps which are fitness evalu-
ation, personal and global best updating, and position and velocity updating.
The fitness evaluation, and position and velocity updating steps are run in a
parallel manner using the map and reduce functions. After S-PSO is completed,
the global best position is taken as an initial centroid for the k-means algorithm
that runs in parallel. Using real and synthetic data sets, S-PSO achieved good
performance and scalability results. Other works for implementing PSO clus-
tering using Apache Spark can be found in [26], [27].

In [28], a new ABC clustering algorithm based on the MapReduce model
(MR-ABC) was proposed. MR-ABC aims to find the optimal centroids by
minimizing the sum of the Euclidian distances. MR-ABC carries out fitness
level evaluation by launching a MapReduce job. During the MapReduce job,
the Map function creates a new key-value pair whereby the value is the minimum
computed distance between the data point and the centroids. Then, emitting
the key-value pairs to the Reduce function to calculate the average distance by
aggregating the values with the same key. MR-ABC was experimented using real
and synthetic data sets, and the analysis of the results showed the effectiveness
and robustness of the MR-ABC for solving the clustering task.

Another work found in [29], a Spark-based artificial bee colony for clustering
was proposed. The idea of clustering is the same as MR-ABC, but the authors
used the Apache Spark framework to run the algorithm. The algorithm eval-
uates the fitness of bees (individuals) in a parallel manner by distributing the
RDDs to the worker nodes along with the individuals. The algorithm was tested
using the KDDCUP99 data set to evaluate its effectiveness. The experimental
result analysis showed that the algorithm obtained good accuracy and achieved
almost linear speedup.

A novel clustering algorithm using enhanced grey wolf optimizer that is
run using the MapReduce framework (MR-EGWO) and was introduced in [30].
MR-EGWO starts by dividing the data set into partitions that are distributed
among the Hadoop nodes. Then, the MapReduce job is launched to create a set
of key/value pairs using the Map function. After that, the set of key/value pairs
is used by the Reduce function to collect values based on a key. MR-EGWO
was tested using real and synthetic data sets. The results showed that MR-
EGWO outperformed four MapReduce-based clustering algorithms according
to the F-measure and also obtained significant speedup results.

3. Cost-Sensitive Differential Evolution Classifier Based On Spark

In [14], our cost-sensitive differential evolution classification algorithm showed
itself as efficient and robust to handle highly imbalanced binary data sets. How-
ever one of the drawbacks is that it shows inefficient performance when applied
to big data sets. In this work, we proposed a scalable design for the cost-sensitive
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differential evolution classifier based on Apache Spark (SCDE) in order to han-
dle big data sets. The SCDE algorithm is based on differential evolution to
find the optimal centroid of each class label in a training data set. Then, each
instance in a testing data set is assigned to the closest centroid based on the
Euclidean distance. SCDE starts with a predefined number of individuals NP
that form the initial population Popinitial. Each individual ~xi is encoded as
follows:

~xi = {~vc1 , ~vc2 , . . . , ~vcn}, i = {1, 2, . . . , NP} (1)

where ~vcn is a d-dimensional centroid vector of class label cn.
Furthermore, each individual (vector) has an identification number (ID).

Each centroid vector of individual ~xi in the initial population Popinitial is ran-
domly initialized in the d-dimensional problem space. After initialization, the
individuals are evaluated using an objective function F to measure their fitness
as follows:

F (~xi) =

N∑
j=1

Fψcost(~Ij) (2)

Fψcost(~Ij) =


Cost+ if ŷ 6= y and y = +

Cost− if ŷ 6= y and y = −
Otherwise 0

(3)

Here, Cost+ is the misclassification cost of the positive class label, Cost− is
the misclassification cost of the negative class label, N is the total number of
instances in the data set, ŷ is the predicted class label of instance ~Ij , and y is the

actual class label of ~Ij . The fitness level of the individual vector ~xi is evaluated
in two steps. In the first step, all instances in a training data set are assigned
to the closest centroid according to the Euclidean distance, Equation 4. After
that, the second step is carried out by summing over the misclassification cost
of all instances that are misclassified.

d
(
~a,~b
)

=

√√√√ n∑
k=1

(ak − bk)2 (4)

Then, Popinitial goes through a repeated evolution process (mutation, crossover,
and selection) to improve Popinitial.

The operations for generating a new population in the following generation
G + 1, besides the fitness evaluation, need to be adapted in order to work on
large data sets. For example, suppose the data set contains 100 million examples
with two class labels and the population size is 20, thus, the cost-sensitive DE
classifier needs to compute 100,000,000 × 2 × 20 = 4,000,000,000 distance values
during one iteration. The fitness evaluation of the individuals requires more
computational time and consumes much more memory space compared to the
operations (mutation, crossover, and selection) for generating a new population
in generation G+1. In SCDE, the fitness evaluation of the individuals is carried
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Figure 1: SCDE Architecture
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out across a cluster of worker nodes while the operations for generating a new
population for G+ 1 is performed in the master node.

Figure 1 shows the architecture of SCDE. In Figure 1, the driver program
starts by creating a directed acyclic graph (DAG) for the RDD operations and
sends the tasks to the executors. In addition, the driver program sends the intial
population as a broadcast variable to the executors through a cluster manager
for the fitness evaluation. After that, the executors starts reading the part of
the RDD to work on. In this stage, each executor starts extracting one instance
vector I at a time from the RDD. Then, for each individual, I is assigned to
the closest centroid based on the Euclidean distance. If the class label of the
assigned centroid does not match with the actual class label cl of I, then vector’s
ID and the cost of misclassification cl are added to the accumulator variable
AccumulatorFV as shown in Algorithm 1. It should be noted here that the data
instances are read only once by the executors and are cached in the executors’
memory for the next iterations.

Algorithm 1 Fitness Function Evaluation - Executor

for each data instance x in RDD do
for each individual (vector) in Broadcast Variable do

Assign x to closest centroid
if Assigned Class(x) != Actual Class(x) then

Add MisclassificationCost and Individual’s ID to accumulator
AccumulatorFV

end if
end for

end for

After the executors finished their work, the accumulator variableAccumulatorFV
is sent to the driver program (master node). In the driver program, the genera-
tion of the new population for the next generation G+1 starts with updating the
fitness of all the individuals. Then, Pop sequentially goes through the mutation,
crossover, and selection operations to generate a new population. Here, after
the crossover operation is carried out, the trail vectors are sent to the executors
for fitness evaluation. Then, the selection operation is performed by applying
the principle of “the survival of the fittest” to choose between the current indi-
vidual and its trial vector based on the fitness value. The portion of the pseudo
code of the driver program is shown in Algorithm2.

In our work, the scaling factor F is a random value chosen using Equation
5 [31]. In addition, the crossover rate CR value is linearly decreasing with
increasing numbers of generations (Equation 6) [31]. The aim is to explore the
entire space at the beginning by replacing most of the target vector elements
with the mutant vector elements. But at later generations, the CR value will
linearly decrease, thus, more elements will inherit from the target vector. This
leads to explore the interior space comprehensively [31]. It should be noted here
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Algorithm 2 The portion of pseudo code - Driver program

- Initializing all the individuals in the initial population Popinitial randomly.

- Sending the Popinitial to the exectors for fitness evaluation.

- Updating the fitness value for the individuals in Popinitial

while Maximum number of generation is not reached do
for Each individual ~xi in the current population Pop do

- A mutant vector ~mi is generated using DE/best/1/bin schema as
follows:

~mi = ~xbest,G + F.(~xr1 − ~xr2) 1

- A trail vector ~ti (candidate) is generated by combining ~xi and ~mi as
follows:

~tj,i =

{
~mj,i if (rand(0, 1.0) < CR or randj == j)2

~xj,i otherwise

end for
Sending the trail vectors to the executors for fitness evaluation.
The selection operation is carried out to generate a new population.

end while

that each element in the trail vector should be within the range [0,1].

F = 0.5 ∗ (1 + rand(0, 1)) (5)

CR = CRmax −
(

(CRmax − CRmin)
G

Gmax

)
(6)

4. Data set and Environment

In our work, we used a new and reliable intrusion data set, which is CI-
CIDS2017, to evaluate the performance and scalability of SCDE. CICIDS2017
was generated by the Canadian Institute for Cybersecurity, which contains the
most recent types of attacks captured during five days starting from July 3,
2017. The CICIDS2017 data set consists of eight CSV files, which are the net-
work traffic analysis results that were collected using the CICFlowMeter tool

1Where best is an index of the best vector, and r1 and r2 are random integer values within
the range {1, 2, . . . , NP}, which should be dissimilar and different than the index values of
the best vector and the target vector. F is the scaling factor.

2CR is the crossover rate.
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Table 1: Properties of Data Sets

Data set # Features Label # Instances Percentage Total

Botnet 4

BENIGN

(Normal)
188,955 98.98%

190,911

Botnet

Attack *
1,956 01.02%

Brute Force 3

BENIGN

(Normal)
431,813 96.90%

445,645

Brute Force

Attack *
13,832 03.10%

Web Attack 4

BENIGN

(Normal)
168,051 98.72%

170,231

Web

Attack *
2,180 01.28%

Port Scan 5

BENIGN

(Normal)
127,292 44.49%

286,086

Port Scan

Attack
158,804 55.51%

* A minority class label.

[32]. Each CSV file contains one type of attack along with normal traffic (Be-
nign). Besides, each record has 78 features describing the behavior of 25 users.
For our experiments, we focused on four types of attacks which are Brute force,
Botnet, Port Scan, and Web Attack that were taken from CICIDS2017. Table
1 shows the data sets including the number of features, the total number of in-
stances in each data set as well as the number of instances and the distribution
percentage of each class label. From the table we can easily see that three out
of four data sets are highly imbalanced. For example, Botnet attack represents
only 01.02% of instances in the Botnet data set.

It should be noted here that the instances that have a missing value were
removed. Furthermore, we performed supervised feature selection on the data
sets using WEKA [33] to reduce the number of features as shown in Table 1,
and then applied the Min-Max normalization technique to normalize all data
sets.
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The Brute Force and Web Attack data sets are multi-labels data sets. There-
fore, we decided to transform both data sets into binary data sets by mapping
various attack types to one attack. In the Brute Force data set, “SSH-Patator”
and “FTP-Patator” labels are mapped to one label named “Brute Force”. For
the Web Attack data set, “Web Attack-Sql”, “Web Attack-XSS”, and “Web
Attack-Brute Force” labels are mapped to the “Web Attack” label.

The experiments were run on the SDSC Dell Cluster with Intel Haswell
Processors (COMET) operated by the San Diego Supercomputer Center at UC
San Diego3. The SDSC-Comet cluster consists of 1,948 nodes that have 24 Intel
Xeon cores (2.5 GHz speed) and 128GB of DRAM. We implemented and run the
SCDE algorithm using Java Runtime 1.8, Spark version 2.1, and the standalone
cluster manager.

5. Experiments and Results

In this section, we will start by describing the measurements that were used
to evaluate the performance and scalability of SCDE and also the parameter
setting of SCDE . Then, the experiments and the results are explained. We will
focus in particular on the scalability for SCDE including speedup and scaleup.

5.1. Evaluation Measures

In this paper, we used various measures to assess the robustness and scal-
ability of the SCDE algorithm. To assess the performance and effectiveness of
SCDE, we used the Detection Rate, False Alarm Rate, and Geometric Mean
(G-mean) measures. The following are the descriptions of these measures:

– True positive (TP): The number of attack instances that are detected
correctly.

– True negatives (TN): The number of normal behavior instances that are
classified correctly.

– False positives (FP): The number of normal behavior instances that are
classified as attacks.

– False negatives (FN): The number of attack instances that are undetected.

– Detection Rate: The ratio of detecting the attacks is calculated as follows:

TP

TP + FN
(7)

– False Alarm Rate: The ratio of the wrong prediction of normal behavior
is calculated as follows:

FP

TN + FP
(8)

3https://portal.xsede.org/sdsc-comet
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– G-mean: This metric is one of the essential measures to evaluate the
performance of a classifier on a highly imbalanced data set [34], which is
calculated as follows:

G−mean =
√
TPR(sensitivity)× TNR(specificity) (9)

For the scalability evaluation, we used the following measures:

– Speedup [35]: Is a metric that measures the parallelization capability of
the application, which is the ratio of the computation time on a single node
T1 to the computation time on P nodes Tp. The speedup is calculated as
follows:

Speedup =
T1
Tp

(10)

Here, the number of nodes P is increased in a certain ratio while the data
set size is fixed.

– Scaleup [35]: Is a metric that measures how the cluster of nodes are utilized
efficiently by the parallel algorithm, which is calculated as follows:

Scaleup =
Tsp
TRsp

(11)

Here, the data set size S and the P nodes are increased by the same ratio
R.

For the experiments, the parameters of SCDE were taken from [31], except
the maximum number of generations, which are:

• Maximum number of generations = 200

• Population size NP = 100

• Crossover range [CRmin=0.5, CRmax = 1.0]

• Scaling factor F : a random value in range [0.5, 1.0]

5.2. Performance Analysis

For the performance experiment, we performed 25 independent runs for
SCDE on the data sets in Table 1 to evaluate the performance and effective-
ness of SCDE. In addition, we compared the performance of SCDE with the
performance of three chosen cost-sensitive classification algorithms. The chosen
algorithms are Logistic Regression [36], Näıve Bayes [37], and RBF Network
[38]. We ran the cost-sensitive classification algorithms using the Waikato En-
vironment for Knowledge Analysis (WEKA) tool version 3 [39],[40].

For this experiment, the misclassification cost of the majority and minority
class labels for the Botnet, Brute Force, Web Attack data sets are empirically
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Table 2: Misclassification cost of class labels for each
data set

Data set Class labels

Botnet
Botnet Attack * Normal

97.0 1.0

Brute Force

Brute Force

Attack *
Normal

31.0 1.0

Web Attack
Web Attack * Normal

76.0 1.0

Port Scan

Port Scan

Attack
Normal *

1.0 1.2

* Minority class label.

Table 3: G-mean Results in Percent

Machine Learning

Algorithms

Bot

Attack

Brute

Force

Web

Attack

Port

Scan
Average

Logistic Regression 87.12 99.84 90.29 99.21 94.12

Näıve Bayes 77.94 99.64 34.76 97.75 77.52

RBF Network 88.45 59.37 90.57 98.28 84.17

SCDE-Fcost

91.80

[±0.06]

99.56

[±0.00]

90.52

[±0.71]

99.14

[±0.04]
95.26

Table 4: Detection Rate Results in Percent

Machine Learning

Algorithms

Bot

Attack

Brute

Force

Web

Attack

Port

Scan
Average

Logistic Regression 100.00 99.99 84.22 99.53 95.93

Näıve Bayes 100.00 99.96 96.60 99.31 98.97

RBF Network 100.00 99.89 84.22 99.29 95.85

SCDE-Fcost

99.81

[±0.11]

100.00

[±0.00]

88.14

[±2.50]

99.22

[±0.01]
96.79
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Table 5: False Alarm Rate Results in Percent

Machine Learning

Algorithms

Bot

Attack

Brute

Force

Web

Attack

Port

Scan
Average

Logistic Regression 24.10 0.31 3.20 1.12 7.18

Näıve Bayes 39.25 0.69 87.49 3.79 32.81

RBF Network 21.77 64.72 2.60 2.72 22.95

SCDE-Fcost

15.57

[±0.02]

0.89

[±0.00]

6.99

[±1.55]

0.94

[±0.07]
6.10

Table 6: Duplicate Data Sets

Data set Duplication Rate Size

20T 20 times 8,912,900

40T 40 times 17,825,800

60T 60 times 26,738,700

determined. Table 2 shows the best misclassification cost that was obtained for
each data set.

Tables 3, 4, and 5 show the results achieved by SCDE and three cost-sensitive
classification algorithms for all data sets in terms of G-mean, detection rate,
and false alarm rate, respectively. Furthermore, the G-mean, detection rate,
and false alarm rate results were averaged over the given data sets, as shown
in the last column in Tables 3, 4, and 5, respectively. Moreover, the standard
deviation of 25 independent runs for SCDE are given within the brackets.

From the results, SCDE obtained the best average G-mean and false alarm
rate results compared to the Logistic Regression, Näıve Bayes, and the RBF
Network algorithm, where the results were 95.26% and 6.10%, respectively. Fur-
thermore, SCDE achieved a very good average detection rate, where the result
was 96.79%. Overall, SCDE is competitive compared to three cost-sensitive ML
algorithms as well as it can detect attacks efficiently with a low false alarm rate.

5.3. Scalability Analysis

Since the data sets in Table 1 are too small to measure the speedup of SCDE
on a large cluster of nodes, we decided to duplicate the largest data set in Table
1, which is the Brute Force data set by replicating the original data set 20,
40, and 60 times. Table 6 shows the sizes of the Brute Force data sets after
duplication.

In the speedup measurement experiment, we ran SCDE on all duplicate data
sets for up to 48 nodes on the COMET cluster. For each run, the number of
nodes is increased by multiples of eight while the data size is kept fixed. We
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(a) Running Time

(b) Speedup

Figure 2: Running Time and Speedup using the 20T data set
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(a) Running Time

(b) Speedup

Figure 3: Running Time and Speedup using the 40T data set
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(a) Running Time

(b) Speedup

Figure 4: Running Time and Speedup using the 60T data set
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reported the running time in seconds and the speedup of SCDE for all duplicate
data sets as shown in Figures 2 to 4. The black dashed line in Figures 2b, 4b,
4b represents the linear speedup.

From Figures 2a, 3a, and 4a, we can easily observe that the running time of
SCDE for all data sets is decreasing approximately exponentially. For example,
the running time of SCDE for the 20T, 40T, and 60T data sets using 48 nodes
is reduced to 931s, 1,758s, and 2,676s, respectively, compared to the running
time of SCDE using one node which are 38,633s, 76,761s, 122,219s for the 20T,
40T, and 60T data sets, respectively.

In the speedup evaluation, we can see from Figure 2b that the speedup
results for 8 and 16 nodes using the 20T data set are approximately the linear
speedup. The speedup values then drift away a little from the linear speedup
starting from 24 nodes, where the speedup results for 24, 32, 40, and 48 nodes
using the 20T data set are 20.55, 28.34, 34.31, and 41.50, respectively.

In Figure 3b , the speedup results using the 40T data set are almost linear
for 8, 16, 24, and 32 nodes where the speedup results are 7.61, 14.89, 22.25,
29.72, respectively. For 40 and 48 nodes, the speedup results are 36.31, and
43.66, which are very close to the linear speedup.

For the 60T data set, the speedup results are almost identical to the linear
speedup where the speedup results for 8, 16, 24, 32, 40, and 48 nodes are 7.96,
15.62, 22.56, 30.09, 38.30, and 45.67, respectively as shown in Figure 4b.

Overall, we can conclude from the previous results that the running time of
SCDE is significantly improved with increasing numbers of nodes. Furthermore,
the speedup achieved by SCDE is close to the linear speedup.

For the Scaleup evaluation experiment, we used the Brute Force data set
to run SCDE on the COMET cluster to measure the capability of SCDE on
utilizing the cluster of nodes efficiently. For this experiment, we doubled the
data set size and number of nodes for each run starting from 445,645 records for
data size and 2 nodes. Figure 5 shows the scaleup results achieved by SCDE.
From this figure, SCDE shows good scaleup results that have approximately a
constant ratio ranging between 0.96 and 1.0. Moreover, the results are close to
1.0 which is the optimal value.

6. Conclusion and Future Works

In this paper, we designed and implemented a scalable cost-sensitive differ-
ential evolution (SCDE) algorithm using Apache Spark to solve the classification
task for imbalanced and massive data. SCDE is based on DE to find the opti-
mal centroid vector for each class label by minimizing the total misclassification
cost. SCDE assigns each instance in a testing data set to the closest centroid.

The experiments used real intrusion detection data sets to evaluate SCDE’s
performance and scalability. The experimental results revealed that SCDE effi-
ciently detects an attack with a low false alarm rate. Furthermore, the scalability
analysis showed that the improvement factor of SCDE’s running times are very
close to the linear values for most data sets, and SCDE scales efficiently with
data size increases.
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Figure 5: SCDE Scaleup

Overall, we can conclude that SCDE is robust and efficient for handling
binary imbalanced data and achieved good speedup and scaleup results that are
close to linear.

Our future work aims to conduct experiments on terabyte-size data sets
using hundreds nodes. Moreover, finding a solution to cope with imbalanced
multi-label data set is another future topic of investigation.
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