
Performance Evaluation of Deep Neural Networks Applied to

Speech Recognition: RNN, LSTM and GRU

Apeksha Shewalkar, Deepika Nyavanandi, Simone A. Ludwig
Department of Computer Science, North Dakota State University,

Fargo, ND, USA

January 23, 2019

Abstract

Deep Neural Networks (DNN) are nothing but
neural networks with many hidden layers. DNNs
are becoming popular in automatic speech recog-
nition tasks which combines a good acoustic with
a language model. Standard feedforward neural
networks cannot handle speech data well since
they do not have a way to feed information from
a later layer back to an earlier layer. Thus,
Recurrent Neural Networks (RNNs) have been
introduced to take temporal dependencies into
account. However, the shortcoming of RNNs
is that long-term dependencies due to the van-
ishing/exploding gradient problem cannot be
handled. Therefore, Long Short-Term Memory
(LSTM) networks were introduced, which are a
special case of RNNs, that takes long-term de-
pendencies in speech in addition to short-term
dependencies into account. Similarily, GRU
(Gated Recurrent Unit) networks are an im-
provement of LSTM networks also taking long-
term dependencies into consideration. Thus, in
this paper, we evaluate RNN, LSTM and GRU
in order to compare their performances on a re-
duced TED-LIUM speech data set. The results
show that LSTM achieves the best word error

rates, however, the GRU optimization is faster
while achieving word error rates close to LSTM.

1 Introduction

Deep learning is a term used to describe a spe-
cific class of artificial neural networks one that
is composed of many layers. Neural networks for
short, have existed for many decades. However,
the training of deep architectures had failed un-
til Geoffrey Hinton’s breakthrough work in 2006
[1]. Even though there are some algorithmic in-
novations to these deeper networks, however, the
dramatic rise in computing power using GPUs
made the processing of larger data sets possible.

Deep learning methods have many application
areas, and many successes have been seen in par-
ticular in the image processing area. For exam-
ple, a deep learning architecture called Convolu-
tional Neural Networks (CNNs) are designed to
emulate the behavior of a visual cortex. CNNs
perform very well on any visual recognition
tasks. The CNN architecture consists of spe-
cial layers called convolutional layers and pooling
layers. These layers allow the network to encode
certain images properties.

1



Autoencoders is another class of a deep learn-
ing architecture. Autoencoders are used to re-
duce the input data by decreasing the dimension-
ality of the feature space. In stacked denoising
autoencoders for example, a partially corrupted
output is cleaned, i.e., de-noised.

Another area where deep learning is success-
fully applied is automatic speech recognition. In
automatic speech recognition, good acoustic and
language models are combined [2, 3]. The speech
recognition problem involves time series data.

Feedforward neural networks are unidirec-
tional whereby the outputs of one layer are
forwarded to the following layer. These feed-
forward networks cannot persist past informa-
tion. Furthermore, when DNNs are used to
analyze speech recognition, certain issues are
encountered including different speaking rates,
and temporal dependencies [4, 5, 6]. DNNs can
only model fixed size sliding window of acous-
tic frames but cannot handle different speaking
rates [6]. Recurrent Neural Network (RNN) is
another class of network that contains loops in
the hidden layer to retain the information at the
previous time step to predict the value of the
current time step. This mechanism helps RNNs
to handle different speaking rates [6].

Temporal dependencies could be an issue
while analyzing speech recognition tasks. Tem-
poral dependencies may be present in the short-
term or long-term depending on the speech
recognition problem. RNNs take into account
only the short-term dependencies due to the
vanishing/exploding gradient problem. In the
last couple of years, RNNs are being applied to
a variety of problems such as machine transla-
tion, image captioning, and speech recognition.
Speech involves a dynamic process, and thus,
RNN seems a good choice over traditional feed-
forward network [7].

However, the applicability of RNN is lim-
ited due to two reasons. The first is that
RNNs require pre-segmented training and post-
processing of the output to convert it into la-
beled sequences. The Connectionist Temporal
Classification (CTC) for labeling sequence data
in training with RNN solves this shortcoming.
The CTC method has been proven to be help-
ful where alignment between input and output
labels is unknown [8]. Second, for long term
dependencies in data where the gap between
the relevant information and the place where
it is needed is large, RNNs have only limited
use. Thus, a special type of RNN, Long Short-
Term Memory (LSTM) networks have been in-
troduced. LSTMs are designed to work on long-
term dependencies in data. LSTM prove to be
effective in speech recognition tasks [7] where the
special memory cells of LSTMs are used to iden-
tify long dependencies. Slightly different than
LSTM is the Gated Recurrent Unit (GRU) in-
troduced in 2014 [9]. GRUs are also designed
for long-term dependencies and work well with
sequential data as do LSTMs.

In this paper, we have evaluated the perfor-
mance of RNN, LSTM, and GRU for speech
recognition applied to the reduced TED-LIUM
data set [10] using an appropriate regulariza-
tion method. Different parameterized models
are trained end-to-end using CTC for labeling
sequence data.

The paper is structured as follows. Section
2 describes related work in the area of speech
recognition and deep learning. In Section 3 the
three approaches applied are described. Section
4 describes the experiments conducted and dis-
cusses the results. The conclusion and future
work is provided in Section 5.

2



2 Related Work

Traditionally, generative models were used for
speech recognition. Generative models are
typically composed of Maximum-A-Posteriori
(MAP) estimation, Gaussian Mixture Models
(GMMs), and Hidden Markov Models (HMM)
[11, 12]. These traditional models require ex-
pert knowledge (i.e., knowledge of a specific lan-
guage) as well as preprocessing of the text for
Automatic Speech Recognition (ASR) [12]. For-
tunately, an end-to-end ASR does not require
expert knowledge because it depends on paired
acoustics and language data [12].

Recent advances in deep learning have given
rise to the use of sequence-to-sequence models
(discriminative models) for speech recognition
[11, 13]. In simple terms, sequence-to-sequence
model for speech recognition takes an acoustic
sequence as input and returns a transcript se-
quence as output [11].

Our work is guided by many previous works
done in this area. In particular, RNNs have
achieved excellent results in language modeling
tasks as outlined in [14, 15]. Language model-
ing is based on a probabilistic model that is fit-
ted to assign probabilities to sentences. This is
accomplished by predicting the next word in a
sentence given previous word data. The experi-
ments were performed on the popular Penn Tree
Bank (PTB) data set [15].

Language modeling is key to many problems
such as speech recognition, machine translation
or image captioning. RNNs and LSTMs have
both been used to map sequences to sequences as
well. Sequence to sequence models are basically
made up of two RNNs; an encoder to process
the input and a decoder to generate the output.
In [16], multi-layered RNN cells have been used
for the translation tasks and were evaluated on

a popular English to French translation from the
WMT’14 data set [16].

LSTM network architectures have proven to
be better than standard RNNs on learning Con-
text Free Language (CFL) and Context Sensitive
Language (CSL) as described in [17]. Partic-
ularly, in speech recognition tasks, RNNs and
LSTMs have achieved excellent results. Se-
quence labeling is an important task in train-
ing RNNs during the speech recognition process.
HMM-RNN frameworks were used in the past
[18, 19], however, they do not perform well with
DNN.

Graves et al. [8] came up with a very efficient
Connectionist Temporal Classification (CTC)
method of sequence labeling to train RNNs end-
to-end. This method works very well for prob-
lems where input-output label alignment is un-
known, and the method does not require pre-
segmented training data and post processing of
the outputs. In addition, Graves et al. also in-
troduced deep LSTM RNNs and evaluated the
framework on speech recognition. Particularly,
RNN with CTC was used to train the model end-
to-end. The authors achieved the best recorded
score on the TIMIT phoneme recognition bench-
mark [7].

Sak et al. [20] evaluated and compared the
performance of LSTM, RNN and DNN architec-
tures on a large vocabulary speech recognition
problem - the Google English Voice Search Task.
The authors have used an updated architecture
compared to standard LSTM to make better use
of the model parameters.

Several experiments are performed on the
TIMIT speech data set using bidirectional
LSTM, deep bidirectional LSTMs, RNNs, and
hybrid architectures. Bidirectional LSTM net-
works have been used for the phoneme classifi-
cation task [21, 22]. Results have shown that

3



bidirectional LSTM performs better than uni-
directional LSTM and standard RNNs on the
frame-wise phoneme classification task. These
results suggest that bidirectional LSTM is an ef-
fective architecture for speech processing where
context information is very important.

A hybrid bidirectional LSTM-HMM system
applied to phoneme recognition has proved as an
improvement over unidirectional LSTM-HMM
as well as traditional HMM systems. Bidirec-
tional LSTMs have been experimented on the
handwriting recognition problem, and were eval-
uated on both online and offline data, thus
proving to outperform the state-of-the-art HMM
based system [23].

Deep bidirectional LSTMs have been applied
to the speech recognition task whereby each hid-
den layer was replaced by a combination of a
forward layer and a backward layer. In this
architecture, every hidden layer receives input
from both the forward and backward layer at
one level below. This type of deep bidirectional
LSTM network combined with the CTC objec-
tive function has been used for end-to-end speech
recognition. The network was evaluated on the
Wall Street Journal corpus [24]. The authors’
novel approach with the objective function has
allowed direct optimization of the word error
rate, even in the absence of a language model.
A hybrid of deep bidirectional LSTM and HMM
system has been used for speech recognition on
the TIMIT data [25] outperforming GMM deep
network benchmarks on part of the Wall Street
Journal corpus.

Different DNN architectures have been eval-
uated on hundreds of hours of speech data
in recent years like Wall Street Journal, Lib-
rispeech, Switchboard, TED-LIUM, Fisher Cor-
pus [26, 27, 28]. Specifically, the TED-LIUM
data set has been used in a variety of tasks such

as in audio augmentation [28], in modeling prob-
abilities of pronunciation and silence [29], etc.
Furthermore, the TED-LIUM data set has also
been used in automatic speech recognition com-
bined with human correction at the word level
and lattice level [30].

Gated Recurrent Units (GRU) recurrent neu-
ral networks were introduced by Cho et al. in
2014 [31]. GRUs are similar to LSTMs, both
were designed to handle long term dependencies.
However, GRUs have a simpler structure than
LSTMs. Both architectures have been used for
polyphonic music modeling as well as for speech
recognition tasks [9, 32]. The results show that
GRUs are equally efficient as LSTMs.

Our work is similar to Baidu research [26]
where a bidirectional RNN is used to speed up
the speech recognition performance using GPU
(Graphics Processing Unit) parallelization. We
have used a single GPU structure for our ex-
periments to evaluate and compare the results
of three recurrent networks, namely bidirec-
tional RNN, bidirectional LSTM, and bidirec-
tional GRU.

3 Recurrent Neural Network
Architecture

This section first outlines the three models used
for the experimentation followed by the chosen
architecture description.

3.1 Recurrent Neural Network
(RNN)

As mentioned earlier, in RNN the decision made
at time t−1 affects the decision at time t. Thus,
the decision of how the network will respond to
new data is dependent on two things, (1) the

4



current input, and (2) the output from the recent
past. RNN calculates its output by iteratively
calculating the following two equations:

ht = H(Wxhxt +Whhht−1 + bh) (1)

yt = Whyht + by (2)

where, x is the inputs, y is the output se-
quence, h is the hidden vector sequence at time
slices t = 1 to T . Further W represents the
weight matrices, and b represents the biases. H
is the activation function used at the hidden lay-
ers.

3.2 Long Short-Term Memory
(LSTM)

As a solution to the shortcomings of normal
RNNs, Hochreiter and Schmidhuber came up
with LSTM networks [33]. Special memory cell
architecture in LSTM make it easier to store in-
formation for long period. The cell structure has
been modified by many people since then, how-
ever, the standard formulation of a single LSTM
cell can be given by following equations:

ft = σ(Wf · [ht−1, xt] + bf ) (3)

it = σ(Wi · [ht−1, xt] + bi) (4)

C̃t = tanh(WC · [ht−1, xt] + bC) (5)

Ct = ft ∗ Ct−1 + it ∗ C̃t (6)

ot = σ(Wo · [ht−1, xt] + bo) (7)

ht = ot ∗ tanh(Ct) (8)

where σ is the sigmoid function, tanh is the
hyperbolic tangent function, i, f , o, C, C̃ are
the input gate, forget gate, output gate, memory
cell content, and new memory cell content, re-
spectively. The sigmoid function is used to form

three gates in the memory cell, whereas the tanh
function is used to scale up the output of a par-
ticular memory cell.

3.3 Gated Recurrent Units (GRU)

Introduced in 2014 [9], GRUs are similar to
LSTMs but they have fewer parameters. They
also have gated units like LSTMs which con-
trols the flow of information inside the unit but
without having separate memory cells. Unlike
LSTM, GRU do not have output gate, thus ex-
posing its full content. GRU formulation can be
given by following equations:

rt = sigm(Wxrxt +Whrht−1 + br) (9)

zt = sigm(Wxzxt +Whzht−1 + bz) (10)

h̃t = tanh(Wxhxt +Whh(rt � ht−1) + bh) (11)

ht = zt � ht−1 + (1− zt)� h̃t (12)

where rt, zt, xt, ht are the reset gate, update
gate, input vector and output vector, respec-
tively. Similar to LSTM, W denotes the weight
matrices, b the biases, sigm is the sigmoid acti-
vation, and tanh is the hyperbolic tangent acti-
vation function.

Both LSTM and GRU are equally capable to
handle long term dependencies, and have been
experimented and compared with on machine
translation tasks and proved to be comparably
efficient [34].

3.4 Architecture for Experiments

The RNN architecture that we are using is based
on [26]. The architecture takes speech spectro-
grams as an input and creates English text as an
output. During pre-processing, a typically small
window of a raw audio waveform is taken to com-
pute FFT (Fast Fourier Transform) to calculate

5



the magnitude (power) in order to describe the
frequency content in the selected local window.
Then, the spectrogram is generated by concate-
nating frames from adjacent windows of the in-
put audio. These spectrograms serve as the in-
put features for the RNN.

Consider a single input utterance x and la-
bel y as being sampled from the training set
X = {(x(1), y(1)), (x(2), y(2)), ...} where every
utterance x(i) is a time series of length T (i);
T (i) is a time-slice represented as a vector of

speech features x
(i)
t from t = 1, ..., T (i). Even-

tually, the sequence of inputs x are converted
into the sequence of character probabilities for
transcription y as: ŷt = P(ct|x), where ct ∈
{a, b, c, ..., z, space, apostrophe, blank}.

The RNN model consists of one input layer,
one output layer and five hidden layers. Figure
1 shows the architecture with the different lay-
ers and notation used below. The hidden layer is
denoted by h(l). Thus, for input x, h(0) is the in-
put and the output at the input layer depending
on the spectrogram frame xt and context C of
frames where t is the time. The first three of the
five hidden layers are normal feedforward layers.
For each time t, these are calculated by:

h
(l)
t = g(W (l)h

(l−1)
t + b(l)) (13)

In Equation 13, g(z) is a clipped rectified lin-
ear unit (ReLu) activation function that is used
to calculate the output at hidden layers, W (l)

represents the weight matrix, and b(l) is the bias
vector at layer l. In order to avoid the vanish-
ing gradient problem, ReLu functions are chosen
over sigmoid functions.

The following layer (layer 4) is a Bidirectional
Recurrent layer (BRNN) consisting of one for-
ward hidden sequence and one backward hid-
den sequence [7]. Standard RNNs make use of

only the previous context information but bidi-
rectional RNN explore the future context as well.
In particular, for speech where complete utter-
ances are recorded at once, BRNN is a better
choice over simple RNN. The set of two hid-
den sequence layers in BRNN, one forward re-
current sequence h(f), and one backward hidden
sequence h(b) can be formulated as:

h
(f)
t = g(W (4)h

(3)
t +W (f)

r h
(f)
t−1 + b(4)) (14)

h
(b)
t = g(W (4)h

(3)
t +W (b)

r h
(b)
t+1 + b(4)) (15)

Please note that the forward sequence is cal-
culated from t = 1, ..., t = T (i) for the ith utter-
ance, whereas the backward sequence is calcu-
lated from t = T (i), ..., t = 1. This way BRNN
processes the data in both directions using two
separate hidden sequences, and then ‘feedfor-
ward’ the output to the next layer, which is layer
5. Thus,

h
(5)
t = g(W (5)h

(4)
t + b(5)) (16)

where h
(4)
t = h

(f)
t + h

(b)
t .

Our experiments are performed with three
models, one where we use bidirectional RNN,
the second with bidirectional LSTM, and the last
model with a bidirectional GRU layer. The for-
mulation of bidirectional LSTM or GRU is the
same as bidirectional RNN, however, instead of
RNN we use either a LSTM cell or a GRU cell
in layer 4.

For the output layer a standard softmax func-
tion is used in order to calculate the predicted
probabilities of characters for each time slice t,
and character k in the alphabet. This output is
given by:

6



Figure 1: RNN Architecture

h
(6)
t,k = ŷt,k ≡ P(ct = k|x) =

exp(W
(6)
k h

(5)
t + b

(6)
k )∑

j exp(W
(6)
j h

(5)
t + b

(6)
j )

(17)

where W
(6)
k and b

(6)
k denote the kth column of

the weight matrix and the kth bias, respectively.
After the character probabilities are calcu-

lated, the CTC loss is calculated next [26]. The
CTC loss function is used to integrate over all
possible alignments of characters. Thus, given
the output of the network, the CTC loss func-
tion calculates the error of the predicted output
as the negative log likelihood of probability of

the target. For this, the network output from
Equation 17, the probabilities of the alphabet
over each time frame, is the input to the CTC
loss function. Given the definition of the CTC
loss, the gradient of the loss according to its in-
puts have to be calculated. This loss can then
be ‘backpropagated’ to the weights of the net-
work. The ADAM optimization algorithm [35]
has been used for the backpropagation training
since this training algorithm is very tolerant to
learning rate as well as to other training param-
eters, and thus, requires less fine-tuning.

7



4 Experiments and Results

In this section, first the data set is described as
well as the evaluation measures used for the ex-
periments are listed, followed by the results and
discussion.

4.1 Data Set

We have used a subset of the improved TED-
LIUM release 2 corpus [10]. The latest version
of the TED-LIUM data set has an improved lan-
guage model which is an important factor in
achieving reduced WER (Word Error Rate) val-
ues [2]. The data set is publicly available and
contains filtered data having audio talks and
their transcriptions obtained from the TED web-
site. This corpus is particularly designed to train
acoustic models. For our experiments, we have
reduced the data set of size 34.3 GB to 11.7 GB.
The data set is available at [36]. The data set
has separate data folders for training, validation
and testing. The following is contained in the
data set:

• 378 audio talks in NIST sphere format
(SPH)

• 378 transcripts in STM format

• Dictionary having pronunciation (152k en-
tries)

• Improved language model having selected
monolingual data from WMT12 corpus [2]

4.2 Evaluation Measures

In speech recognition, there are two different
types of performance or evaluation measures,
which are based on (1) accuracy, and (2) speed

[37]. Evaluation measures based on accuracy in-
clude WER, loss, and mean edit distance.

WER is the most commonly used error mea-
surement in ASR. It is derived from the Leven-
shtein distance [38] and calculated as [39, 40]:

WER = (
S + I +D

N
)× 100. (18)

where S is number of substitutions, I is number
of insertions, D is number of deletions, and N
is the total number of words in the actual tran-
script. The interpretation of WER is that the
lower the WER, the better the speech recogni-
tion is [39, 40].

The loss is also referred to as Expected Tran-
scription Loss [24]. The expected transcription
loss function is defined by:

L(x) =
∑
y

Pr(y|x)L(x, y) (19)

where x is the given input sequence, Pr(y|x) the
distribution over transcription sequences y de-
fined by CTC, and L(x, y) a real-valued tran-
scription loss function.

The edit distance can be best explained with
an example. Let us say the normalized edit
distance between two words/strings (consider A
and B) is d(A,B) [41]. The mean edit distance
is calculated by:

d(A,B) = min(
W (P )

N
) (20)

where P is the editing path between string A
and string B, W (P ) is the total sum of weights
of all the edited operations of P , and N is the
total number of edited operations (the length of
editing path, P ) [41].

4.3 Parameter Setup

The following parameters were used for the runs:

8



• Dropout rate = 30%

• Number of epochs = 10

• Training batch size = 16

• Test batch size = 8

• Activation function = ReLU

• Neuron count in hidden layers = 500 or
1,000 (as indicated)

• Adam optimizer:

– β1 = 0.9

– β2 = 0.999

– ε = 1e-8

– learning rate = 0.0001

4.4 Results

We ran the three models (RNN, LSTM, GRU)
with two different architectures. The first used
500 nodes in each hidden layer whereas the sec-
ond consisted of a 1,000-node architecture.

Table 1 provides the results of the 500-node
architecture experiments. In terms of WER,
RNN achieved 87.02%, LSTM 77.55%, and GRU
79.39% with LSTM scoring best. The loss is
measured as part of the neural network optimiza-
tion and shows a similar trend to the WER with
186.61, 160.51, and 162.22 for RNN, LSTM, and
GRU, respectively. In terms of the mean edit
distance, LSTM achieved the best value with
0.3853.

Table 2 lists the results of the experiments us-
ing the 1,000-node architecture. Again, LSTM
obtained the best WER value of 65.04% followed
by GRU with 67.42% and RNN with 78.66%.
The loss values of LSTM and GRU are close with

134.35 and 136.89, respectively. The best mean
edit distance is 0.3222 achieved by LSTM.

Figure 2 plots the WER values graphically.
The figure clearly shows the lowest WER val-
ues achieved by LSTM for both network archi-
tectures (500- and 1,000-node network).

Figure 3 shows the WER values of each model
(RNN, LSTM, GRU) for the 1,000-node archi-
tecture. The test set was applied after each
epoch had elapsed, i.e., the model obtained dur-
ing training is tested on the test data immedi-
ately after each epoch and the WER is docu-
mented. We can see that LSTM achieves the
best WER value as mentioned above. However,
what can be observed from the figure is that the
best WER value of each model is actually ob-
tained after the 9th epoch. The values at the
9th epoch are 78.43%, 64.76%, 67.34% for RNN,
LSTM, and GRU, respectively.

In terms of the running time, RNN beats both
LSTM and GRU with the shortest execution
times as shown in Figure 4. However, since the
WER values of LSTM and GRU are much better,
RNN is not really comparable. For the 500-node
architecture LSTM ran for more than 2 days
whereas GRU ran for approximately 1.5 days.
The difference is more significant for the 1,000-
node architecture. LSTM ran slightly longer
than 7 days whereas GRU only ran for 5 days
and 5 hours.

5 Conclusion

Since standard feedforward neural networks can-
not handle speech data well (due to lacking a way
to feed information from a later layer back to an
earlier layer), thus, RNNs have been introduced
to take the temporal dependencies of speech data
into account. Furthermore, RNNs cannot handle

9



Table 1: Results for 500-node layer architecture

Model WER (%) Loss Mean edit distance

RNN 87.02 186.61 0.4484
LSTM 77.55 160.51 0.3853
GRU 79.39 162.22 0.3939

Table 2: Results for 1,000-node layer architecture

Model WER (%) Loss Mean edit distance

RNN 78.66 164.60 0.3991
LSTM 65.04 134.35 0.3222
GRU 67.42 136.89 0.3308

Figure 2: WER results in %

the long-term dependencies due to vanishing/ex-
ploding gradient problem very well. Therefore,
LSTMs and a few years later GRUs were intro-
duced to overcome the shortcomings of RNNs.

This paper evaluated RNN, LSTM and GRU
and compared their performances on a reduced
TED-LIUM speech data set. Two different ar-

chitectures were evaluated; a network with 500
nodes and a network with 1,000 nodes in each
layer. The evaluation measures used were WER,
loss, mean edit distance, and the running time.
The results show that the WER value of LSTM
and GRU are close (LSTM scoring slightly better
than GRU), however, the running time of LSTM

10



Figure 3: WER values in % per epoch for all models and the 1,000-node architecture

Figure 4: Running time in days

is larger than GRU. Thus, the recommendation
for the reduced TED-LIUM speech data set is
to use GRU since it returned good WER values
within an acceptable running time.

Future work will include parameter optimiza-

tion in order to investigate the influence on
different parameter settings. Furthermore, the
learning rate, dropout rate as well as higher
numbers of neurons in the hidden layers will be
experimented with.

11



Acknowledgment

This work used the Extreme Science and Engi-
neering Discovery Environment (XSEDE), which
is supported by National Science Foundation
grant number ACI-1548562. We also gratefully
acknowledge the support of NVIDIA Corpora-
tion.

References

[1] G. E. Hinton, S. Osindero, Y. Teh, A fast
learning algorithm for deep belief nets, Neu-
ral Computation 18, 1527-1554, 2006.

[2] A. Rousseau, P. Delglise, Y. Estve, Enhanc-
ing the TED-LIUM Corpus with Selected
Data for Language Modeling and More TED
Talks. Proceedings of Sventh Language Re-
sources and Evaluation Conference, 3935-
3939, May 2014.

[3] Y. Gaur, F. Metze, J. P. Bigham, Manipu-
lating Word Lattices to Incorporate Human
Corrections, Interspeech 2016, 17th Annual
Conference of the International Speech Com-
munication Association, San Francisco, CA,
USA, September 2016.

[4] E. Busseti, I. Osband, S. Wong, Deep Learn-
ing for Time Series Modeling, Seminar on
Collaborative Intelligence in the TU Kaiser-
slautern, Germany, June 2012.

[5] Deep Learning for Sequential Data
- Part V: Handling Long Term
Temporal Dependencies, https:

//prateekvjoshi.com/2016/05/31/

deep-learning-for-sequential-data-

part-v-handling-long-term-temporal-

dependencies/, last retrieved July 2017.

[6] Understanding LSTM Networks,
http://colah.github.io/posts/

2015-08-Understanding-LSTMs/, last
retrieved July 2017.

[7] A. Graves, A. R. Mohamed, G. Hinton,
Speech recognition with deep recurrent neu-
ral networks. 2013 IEEE International Con-
ference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 6645-6649, 2013.

[8] A. Graves, S. Fernndez, F. Gomez, J.
Schmidhuber, Connectionist temporal clas-
sification: labelling unsegmented sequence
data with recurrent neural networks. Pro-
ceedings of the 23rd International Conference
on Machine Learning, 369-376, ACM, June
2006.

[9] J. Chung, C. Gulcehre, K. Cho, Y. Bengio,
Empirical evaluation of gated recurrent neu-
ral networks on sequence modeling. arXiv
preprint arXiv:1412.3555, 2014.

[10] TED-LIUM Corpus, http://

www-lium.univ-lemans.fr/en/content/

ted-lium-corpus, last retrieved July 2017.

[11] C. C. Chiu, D. Lawson, Y. Luo, G.Tucker,
K. Swersky, I. Sutskever, N. Jaitly, An
online sequence-to-sequence model for
noisy speech recognition, arXiv preprint
arXiv:1706.06428, 2017.

[12] T. Hori, S. Watanabe, Y. Zhang, W. Chan,
Advances in Joint CTC-Attention based
End-to-End Speech Recognition with a Deep
CNN Encoder and RNN-LM, arXiv preprint
arXiv:1706.02737, 2017.

[13] W. Chan, N. Jaitly, Q. V. Le, O. Vinyals,
Listen, attend and spell. arXiv preprint
arXiv:1508.01211, 2015.

12



[14] T. Mikolov, Statistical language models
based on neural networks, PhD thesis, Brno
University of Technology, 2012.

[15] W. Zaremba, I. Sutskever, O. Vinyals, Re-
current neural network regularization. arXiv
preprint arXiv:1409.2329, 2014.

[16] I. Sutskever, O. Vinyals, Q. V. Le, Sequence
to sequence learning with neural networks.
Advances in Neural Information Processing
Systems, 3104-3112, 2014.

[17] F. A. Gers, E. Schmidhuber, LSTM recur-
rent networks learn simple context-free and
context-sensitive languages. IEEE Transac-
tions on Neural Networks, 12(6), 1333-1340,
2001.

[18] O. Vinyals, S. V. Ravuri, D. Povey, Re-
visiting recurrent neural networks for robust
ASR. 2012 IEEE International Conference
on Acoustics, Speech and Signal Processing
(ICASSP), 4085-4088, 2012.

[19] A. L. Maas, Q. V. Le, T. M. O’Neil, O.
Vinyals, P. Nguyen, A. Y. Ng, Recurrent neu-
ral networks for noise reduction in robust
ASR. Thirteenth Annual Conference of the
International Speech Communication Asso-
ciation, 2012.

[20] H. Sak, A. Senior, F. Beaufays, Long short-
term memory based recurrent neural network
architectures for large vocabulary speech
recognition. arXiv preprint arXiv:1402.1128,
2014.

[21] A. Graves, J. Schmidhuber, Framewise
phoneme classification with bidirectional
LSTM and other neural network architec-
tures. Neural Networks, 18(5), 602-610, 2005.

[22] A. Graves, S. Fernndez, J. Schmidhuber,
Bidirectional LSTM Networks for Improved
Phoneme Classification and Recognition. In:
Duch W., Kacprzyk J., Oja E., Zadrony
S. (eds) Artificial Neural Networks: Formal
Models and Their Applications ICANN, Lec-
ture Notes in Computer Science, vol. 3697,
Springer, Berlin, Heidelberg, 2005.

[23] A. Graves, M. Liwicki, S. Fernndez, R.
Bertolami, H. Bunke, J. Schmidhuber, A
novel connectionist system for unconstrained
handwriting recognition, IEEE Transactions
on Pattern Analysis and Machine Intelli-
gence, 31(5), 855-868, 2009.

[24] A. Graves, N. Jaitly, Towards end-to-end
speech recognition with recurrent neural net-
works. Proceedings of the 31st International
Conference on Machine Learning (ICML-14),
1764-1772, 2014.

[25] A. Graves, N. Jaitly, A. R. Mohamed, Hy-
brid speech recognition with deep bidirec-
tional LSTM. 2013 IEEE Workshop on Auto-
matic Speech Recognition and Understand-
ing (ASRU), 273-278, December 2013.

[26] A. Hannun, C. Case, J. Casper, B. Catan-
zaro, G. Diamos, E. Elsen, R. Prenger, S.
Satheesh, S. Sengupta, A. Coates A. Y. Ng.
Deep speech: Scaling up end-to-end speech
recognition. arXiv preprint arXiv:1412.5567,
2014.

[27] H. Xu, G. Chen, D. Povey, S. Khudanpur,
Modeling phonetic context with non-random
forests for speech recognition. Sixteenth An-
nual Conference of the International Speech
Communication Association, 2015.

13



[28] T. Ko, V. Peddinti, D. Povey, S. Khudan-
pur, Audio augmentation for speech recog-
nition. Sixteenth Annual Conference of the
International Speech Communication Asso-
ciation, 3586-3589, 2015.

[29] G. Chen, H. Xu, M. Wu, D. Povey, S. Khu-
danpur, Pronunciation and silence probabil-
ity modeling for ASR. Sixteenth Annual Con-
ference of the International Speech Commu-
nication Association, 2015.

[30] Y. Gaur, F. Metze, J. P. Bigham, Manipu-
lating Word Lattices to Incorporate Human
Corrections. Seventeenth Annual Conference
of the International Speech Communication
Association, 3062-3065, 2016.

[31] K. Cho, B. van Merrienboer, D. Bahdanau,
and Y. Bengio, On the properties of neural
machine translation: Encoder-decoder ap-
proaches, Eighth Workshop on Syntax, Se-
mantics and Structure in Statistical Transla-
tion, 2014.

[32] D. Bahdanau, J. Chorowski, D. Serdyuk,
P. Brakel, Y. Bengio, End-to-end attention-
based large vocabulary speech recognition.
2016 IEEE International Conference on
Acoustics, Speech and Signal Processing
(ICASSP), 4945-4949, March 2016.

[33] S. Hochreiter, J. Schmidhuber, Long Short-
Term Memory. Neural Comput. 9, 8, 1735-
1780, November 1997.

[34] K. Bahdanau, K. Cho, and Y. Bengio, Neu-
ral machine translation by jointly learning to

align and translate, Technical report, arXiv
preprint arXiv:1409.0473, 2014.

[35] D. Kingma, J. Ba, Adam: A method
for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[36] Reduced TED-LIUM release 2 corpus (11.7
GB), http://www.cs.ndsu.nodak.edu/

~siludwig/data/TEDLIUM_release2.zip,
last retrieved July 2017.

[37] Speech recognition performance,
https://en.wikipedia.org/wiki/

Speech_recognition#Performance, last
retrieved July 2017.

[38] Levenshtein distance, https://en.

wikipedia.org/wiki/Levenshtein_

distance, last retrieved July 2017.

[39] A. C. Morris, V. Maier, P. Green, From
WER and RIL to MER and WIL: improved
evaluation measures for connected speech
recognition. Eighth International Conference
on Spoken Language Processing, 2004.

[40] Word error rate, https://en.wikipedia.

org/wiki/Word_error_rate, last retrieved
July 2017.

[41] A. Marzal, E. Vidal, Computation of nor-
malized edit distance and applications, IEEE
Transactions on Pattern Analysis and Ma-
chine Intelligence, 15(9), 926-932, 1993.

14


