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Abstract

An intrusion detection system (IDS) is an impor-
tant feature to employ in order to protect a system
against network attacks. An IDS monitors the ac-
tivity within a network of connected computers as
to analyze the activity of intrusive patterns. In the
event of an ‘attack’, the system has to respond ap-
propriately. Different machine learning techniques
have been applied in the past. These techniques fall
either into the clustering or the classification cate-
gory. In this paper, the classification method is used
whereby a neural network ensemble method is em-
ployed to classify the different types of attacks. The
neural network ensemble method consists of an au-
toencoder, a deep belief neural network, a deep neu-
ral network, and an extreme learning machine. The
data used for the investigation is the NSL-KDD data
set. In particular, the detection rate and false alarm
rate among other measures (confusion matrix, classi-
fication accuracy, and AUC) of the implemented neu-
ral network ensemble are evaluated.

Keywords: Ensemble learning, Deep Neural
Networks, NSL-KDD data set.

1 Introduction

Cyber security is becoming more and more impor-
tant when it comes to protect networks, computers,

and data from attacks and unauthorized access. The
term cyber security encompasses many things such
as different technologies, processes and practices.
The different categories include application security,
information security, network security, disaster re-
covery, operational security and end-user education.
One of the challenges of computing systems and net-
work systems is the evolving nature of threats. In
the past, this challenge was dealt with by protecting
the most crucial system components from the biggest
known threats. However, this is not good enough
since it leaves the less important portions of a system
unprotected and vulnerable to possible threats. Thus,
new ways, methodologies, and technologies need to
be designed and invented in order to protect systems
better [1].

Network based attacks have been increasing over
the past years; both in terms of frequency and sever-
ity. One reason is that more and more technologies
use communication networks, in particular wireless
communication systems. Therefore, network secu-
rity has to be a high priority to protect against poten-
tial attacks. This is accomplished by monitoring the
network traffic as well as the usage of a defense sys-
tem. There are different attacks on communication
network systems, which are: flooding, distributed
denial-of-service, surfing, vulnerabilities, etc. Intru-
sion detection systems are systems that are designed



to deal with the recognition of normal behavior on
the network versus abnormal behavior on the net-
work, in particular, when actions are recognized that
threaten the integrity of the computer system [2].

Today’s system and data intrusions are quite so-
phisticated. Thus, these systems require a multi-
tiered approach [3], which implies that companies
that secure their networks often use several technolo-
gies to prevent cyber attacks and intrusions. There is
a variety of tools and methodologies available, how-
ever, the two fundamental elements to a secure net-
work configuration is the firewall and the intrusion
detection system.

IDS (intrusion detection system) are either host
based or network based. The host based system sits
on a particular host and watches for potential attacks
whereas a network based system looks at the network
traffic in real time in order to detect intrusive patterns
in the network [4]. Ideally, a security model should
employ both a host based and a network based solu-
tion since both of these have advantages and disad-
vantages. One drawback for a host based solution is
that resources are taken away from the host in order
to enable the host based protection system. In addi-
tion, host based solutions are reactive, and thus, can
only respond after an attack has actually occurred,
which is undesirable. On the other side, network
based solutions are usually installed in the form of
a hardware appliance, and thus do not need to use
the system resources. This solution tends to be more
costly, however, the installation process is much eas-
ier compared to the host based solution.

An intrusion is detected by observing the differ-
ence between normal operating and intrusion behav-
ior, and thus, divides into anomaly detection and
misuse detection [5]. Anomalies are detected by
analyzing features of normal behavior on the net-
work and identifying anomalies. The advantage of
anomaly detection is that unknown intrusion types
can be detected, however, the process might result in

a high rate of false positives. On the other hand, mis-
use detection analyzes attack behavior by establish-
ing templates of attack characteristics, which is then
used to determine the attacks. Misuse detection has
the characteristics of high accuracy and fast speed,
however, the templates need to be updated very fre-
quently otherwise this method would not be effec-
tive.

Past research suggests that information available
in the network is sufficient, and therefore, IDSs are
preferred [6, 7, 8, 9]. Examples of network based
systems, which have been commercial successes are
Suircate [10], Snort [11], and Bro IDS [12]. As re-
ported by the commercial systems, the usefulness of
IDSs is limited due to poor quality alerts since unfor-
tuatnely perfect detection is impossible [13]. For ex-
ample, Snort deployed at a large financial institution,
has reported 411,947 alerts per day [14]. Managing
so many alerts by hand is completely infeasible, thus
the need for ever improved IDS development.

The aim of this paper is to improve the classifica-
tion accuaracy of IDSs. In particular, this paper an-
alyzes and classifies the NSL-KDD data set [15] to
distinguish between normal and the different types
of intrusion behavior and is an extension of the work
published in [16]. The previous paper only analyzed
normal vs. intrusive behavior whereas this paper also
classifies the different attack classes. The classifi-
cation in this paper is based on a deep learning en-
semble method whereby related deep learning mod-
els are run on the data set and the weighted outcome
is evaluated, thus, employing an ensemble method.

The paper is arranged as follows. Section 2 de-
scribes related work in the area of intrusion detec-
tion systems. In Section 3, the proposed approach is
described. Section 4 contains the experiments con-
ducted as well as the results and findings. The con-
clusion and future work is given in Section 5.



2 Related Work

In order to prevent temporary and permanent dam-
ages caused by unauthorized access a multitude of
different systems have been built to monitor data
flow in networks. Unfortunately, none of these sys-
tems can detect all types of intrusions since attack
permutations are occurring over time. Thus, in an at-
tempt to overcome this, machine learning algorithms
have been applied to classify normal and anomalous
behavior on the network.

Related work in the area can be summarized as
follows. In [17, 18], K-means and K-nearest neigh-
bor algorithms were used to perform the classifica-
tion task. The approach works by using a centroid
function to choose the average and closest grouping
of new instances in order to group similar training
examples together.

Another classification approach used for IDSs are
support vector machines (SVM). SVM divides the
dimensional space into a smaller dimensional hy-
perplane [19, 20]. In [21], SVM was used to auto-
mate feature selection. Feature selection is a pre-
processing step that is usually applied in the area of
data mining, thus, improving the classification rate.
The so-called CSV-ISVM algorithm was proposed
in [22] and uses incremental SVM in order to select
candidate support vectors showing the advantages in
real-time network intrusion detection.

Threshold-based anomaly detection, also known
as signature matching, has been widely applied to
model network traffic as discussed in [23]. The
authors argue that traditional network-based profile
models are not sufficient enough to satisfy user pro-
files in the environment. Therefore, a genetic algo-
rithm approach was used to find signatures of pat-
tern detection rules via permutations of parent sig-
natures. Another approach proposed a core-plus-
module framework (STAT) that is based on the state
transition analysis technique [24]. This is done in or-

der to tailor the design of an IDS to specific traffic
types and environments. Other research compared
a genetic algorithm approach with other approaches
such as Naive bayes and K-nearest neighbor as pro-
vided in [19].

Applications of deep neural networks (DNN) have
seen quite an uptake in recent years, in particular,
since significant breakthroughs have been achieved
for tasks such as image recognition, speech recog-
nition, text recognition, and language translation.
Deep learning encompasses many different neural
network models such as deep belief neural networks,
convolutional neural networks, autoencoders, recur-
rent neural networks, etc. All these deep neural net-
work approaches have been developed each serving a
different purpose. For example, deep belief networks
(DBN) [25] was applied to image, text and voice
learning tasks whereby a DBN is formed by stacking
several restricted boltzmann machines (RBM) [26].
These RBMs serve as multiple processing layers in
order to learn the representation and features inher-
ent in the data with multiple levels of abstraction.

Deep learning methods have been applied to intru-
sion detection as well. Several different DBN archi-
tectures have been applied to the intrusion detection
task. For example, a DBN approach is proposed in
[27] where a two-layer RBM is used to train the net-
work in an unsupervised fashion. This is followed
by a feedforward layer whereby backpropagation is
used to train this layer in a supervised fashion. The
authors report on the classification accuracy based on
the test set comparing their approach with SVM, and
a hybrid version of DBN with SVM.

A DBN algorithm was implemented and applied
on the NSL-KDD data set [28]. The measures used
were classification accuracy, TP (true positives), FP
(false positives), TN (true negatives), and FN (false
negatives).

A hybrid approach based on autoencoder and
DBN was implemented in [29]. The autoencoder



learning method is used to reduce the dimensionality
of the data. This dimensionality reduction allows to
convert high-dimensional data to a low-dimensional
transformation with nonlinear mapping, and thus ex-
tracts the main features of the data. After this first
step, DBN learning is applied to detect anomalies.
The DBN consists of multilayer RBMs followed by a
feedforward layer. First, the RBMs are trained using
an unsupervised approach, which is then followed by
supervised training with the feedforward layer. The
measures reported are TPR (true positive rate), FPR
(false positive rate), accuracy and CPU time.

An improved version of DBM is proposed in [30].
Since the fine-tuning method of DBN is very time-
consuming and suffers from the possibility of only
reaching a local optimum, ELM (Extreme Learning
Machines) was applied. This approach is used in
order to improve the accuracy as well as the effi-
ciency. The improved DBN was compared with the
normal DBN and achieved an improvement of 0.6%
in the detection rate by roughly reducing the execu-
tion time by half. However, besides the detection
rate and the execution time no other measures were
reported on.

In [31], an accelerated DNN is proposed. A paral-
lel version of the DNN is used to accelerate the train-
ing phase, which is a very time consuming task. The
training phase consists of several forward passes and
backward passes. The input is applied to the input
nodes and each layer computes the output on a layer-
by-layer basis; this step is the forward pass. The
backward pass first calculates the error between the
actual output and the desired output and then back-
propagates this error by adjusting the weights in each
layer as to reduce the error during the next iteration.
Since gradient calculations are involved during the
backpropagation process, and given the depth of the
network long training times are unavoidable.

A deep learning approach for flow-based anomaly
detection in a Software Defined Networking (SDN)

environment is introduced in [32]. The DNN model
is built using six basic features, the ones that can
be easily obtained in an SDN environment, and dif-
ferent learning rates were experimented with. The
results were very promising with the best accuracy
achieved when the learning rate was set to 0.0001.

It is important to note that some of the deep learn-
ing methods listed as related work were applied to
the KDD data set [33] and others to the NSL-KDD
data set.

3 Proposed Approach

Ensemble learning is an approach where several clas-
sifiers are trained and their results are fused together
in order to separate the different classes. Ensemble
techniques are also known as multiple classifier sys-
tems, or just ensemble systems. In this paper, several
deep neural network approaches are used and their
results are fused together in order to distinguish be-
tween normal and attack behavior of a network. En-
semble approaches have lead to very promising re-
sults, usually achieving a higher classification accu-
racy than single classifier approaches alone.

3.1 Basic Concepts of Ensemble Learning

The concept of ensemble learning was first intro-
duced in 1979 [34], which used an ensemble system
in a divide-and-conquer fashion whereby the feature
space was partitioned using two or more classifiers.
More than 10 years later, another ensemble system
was introduced showing that the generalization per-
formance of similar neural network configurations
can be improved using ensembles by introducing the
variance reduction property [35]. However, research
in [36] placed ensemble systems at the center of ma-
chine learning research. This was achieved by prov-
ing that a strong classifier in the probably approxi-



mately correct sense can be generated by combining
weak classifiers through a procedure called boosting.

The following paragraphs describe the details of
ensemble learning.

Definition 1 Let Q = {®;,,,...,0y} be a set
of class labels, and a function D : R" — Q is
called a classifier with the feature vector X =
(X] , X2, ...,Xn) e R".

Definition 2 Let iy, hy, ..., 50k R" — Ri =
1,...,M be discriminator functions that correspond
to the class labels @1, o, ...,y respectively. Then,
the classifier D belonging to this discriminator func-
tion is:

D(X) = 0j. & hjs(X) = max (X))

()
for all X € R"™.
Definition 3 Let Dy, D»,...,Dy be classifiers and
the majority voting ensemble classifier D,,q; : R" —

Q is obtained from these classifiers:
Daj(X) =0 < |{j:D;j(X) =04, j=1,....,M}|
—max |{j: D;(X) = @1,j = 1,...M}| (2)
Definition 4 Let D, D,,...,D; be classifiers and
B = (B1,B2,...,Br) € RE be a weight vector assigned

to the classifiers. Then, the weighted majority voting
ensemble classifier D, : R — € is defined by:

L L
B; = max ( Y Bj)

Jj=1
Dj(X)=wjx

Dwmaj (X) = 0jx <=

3.2 Proposed Ensemble Deep Neural Net-
work Classifiers

3.2.1 Autoencoder (AE)

Autoencoders are composed of one input, one hid-
den and one output layer. The output received by

the output layer is a reconstruction of the input af-
ter the input has been ‘squished’ through a smaller
hidden layer. This process offers dimensionality re-
duction and thus a compression similar to PCA (prin-
ciple component analysis). The features that are ex-
tracted via the hidden layer can be used to train a
feedforward layer. This effectively removes the out-
put layer from the autoencoder, so that the hidden
layer can be used as input features for the classifica-
tion or another autoencoder. The network is being
trained by using unsupervised data followed by the
fine-tuning step whereby the last layer is trained us-
ing supervised data.

The autoencoder architecture that was used for
the experiments is identical to the implementation in
[31]. The architecture consists of two autoencoders
of size 20 and 10, respectively, followed by a fully
connected layer of size 5.

3.2.2 Deep Belief Neural Network (DBN)

A DBN trains a sequence of RBMs by defining the
probability distributions over the hidden layer in or-
der to estimate the probability of the generating vis-
ible layer. This is achieved by learning certain pa-
rameters via random sampling in order to learn the
model. The cascade of RBMs allows the hidden vec-
tors of one RBM to be the input for the next RBM
etc.
The following rules are applied:

o [f the number of hidden units in the top layer is
above a certain threshold, then the performance
converges to a certain accuracy.

e The performance tends to increase with the
training of each RBM.

e The performance decreases as the number of
layers increases.



The stacking of RBM layers is effectively a feature
extraction method. The training of the RBM layers is
done without the labels (unsupervised training). The
last layer of the network is a fully connected layer
and is trained with labeled data (supervised training).

The DBN architecture that was used for the ex-
periments consisted of 2 RBM layers with 20 and
15 nodes, respectively, followed by a 15-node fully
connected layer.

3.2.3 Deep Neural Network (DNN)

A DNN consists of an input, several hidden layers,
and an output layer and is trained using backprop-
agation in order to minimize the error between the
actual output and the desired output.

For the experiments, a network with two hidden
layers of size 25 and 20 was implemented. Stan-
dard backpropagation has two shortcomings; the first
is that a fixed learning rate is used, and the second
that the search can get stuck in local minima. Thus,
the Adam optimizer was used [38]. Adam (Adap-
tive Moment Estimation) uses separate learning rates
for each weight as well as an exponentially decaying
average of previous gradients, which leads to better
results.

3.2.4 Extreme Learning Machine RBM (ELM)

Extreme learning machine is a learning algorithm
that is used to train a single hidden layer neural net-
work [39]. The input weights and hidden biases
are randomly generated and the output weights are
calculated by the regularized least square method.
Thus, resulting in a simple deterministic solution.
Since there are no iterations and/or parameter tun-
ing involved as in backpropagation based neural net-
works, the method is very fast. Moreover, the reg-
ularized least squares computations of the ELM are
much faster than solving the quadratic programming

problem as is the case in SVM. Several studies have
shown that ELM is much more efficient than stan-
dard NN and SVM and at the same time achieves
higher generalization performance [40].

The ELM architecture that was used for the exper-
iments follows the implementation as given in [30].
The network structure used is a 110-90-50-25 layer
architecture trained with a maximum number of iter-
ations of 300.

4 Experiments and Results

4.1 NSL-KDD Data set

The MIT Lincoln Lab held a DARPA-sponsored IDS
event which simulated an attack scenario to the Air-
Force base with a repeat event one year later [41]
in 1998. Improvements were suggested by the com-
puter security community during these events. The
DARPA data set [42] consists of host and network
data files recorded during a seven week time period.
The first two weeks were attack-free whereas the re-
maining weeks contained also attack data. In order
to make it easier for the data mining community to
apply machine learning techniques, another data set
- the KDD99 data set was created. This was done
by preprocessing the data and extracting the relevant
features. The output classes are divided into 5 cate-
gories namely DOS (denial of service), probe, R2L
(Root to local), U2R (user to root), and normal. The
KDD?99 data is still in use today and has been exten-
sively studied. Several researchers have pointed out
various shortcomings [43]. These are the following:

e Imbalanced data set; 80% is attack data.
e U2R and R2L attacks are rare.

e Duplicate records in both training and testing
data set.



Thus, these shortcomings were alleviated with the
introduction of the NSL-KDD data set. The NSL-
KDD data set contains 41 features that are either con-
tinuous or discrete. The features of the data set are
grouped into four categories:

e Basic features that are derived from the packet
headers without inspecting the payload infor-
mation.

e Content features for which domain knowledge
is used to assess the payload of the original TCP
packets.

e Time-based traffic features that are extracted to
capture the properties during a 2-second time
window.

e Host-based traffic features that are extracted to
assess attacks that span intervals of longer than
2-second time periods.

The outcome of the network traffic is given as ei-
ther normal or a specific attack type. The simulated
attack types fall into one of the following categories:

e Denial of Service (DoS): this is an attack that
occupies either a computing or memory re-
source so that no other requests can be serviced.

e Probing: an attacker scans the network to gather
information in order to exploit the systems; an
example is port scanning.

e Remote to Local (R2L): an attacker sends a
packet to the network by exploiting some vul-
nerability in order to gain local access; an ex-
ample is password guessing.

e User to root (U2R): an attacker accesses a nor-
mal user account and exploits vulnerability to
gain root access to the system; an example is a
buffer overflow attack.

There are different attack types that map to the dif-
ferent attack classes; these are outlined in Table 1.

Table 1: Mapping of attack types to attack classes

Attack class
DoS

Attack types

back, land,
pod, smurf, teardrop,
mailbomb, apache2,
processtable, udpstorm
ipsweep, nmap,
portsweep, satan, mscan,
saint

ftp_write, guess_passwd,
imap, multihop, phf, spy,
warezclient, warezmaster,
sendmail, named, sn-
mpgetattack, snmpguess,
xlock, xsnoop, worm
buffer_overflow, loadmod-
ule, perl, rootkit, httptun-
nel, ps, sqlattack, xterm

neptune,

Probe

R2L

U2R

Table 2 shows the number of training and testing
records and their distribution based on the type of
network traffic (normal or attack type). There are
125,973 records in the training data set, and 22,543
records in the testing data set.

For the visualization of the data, PCA (principal
component analysis) is used. PCA is a statistical pro-
cedure that uses an orthogonal transformation to con-
vert the data points of correlated variables into a set
of values of uncorrelated variables (principal compo-
nents). The first principal component has the largest
possible variance and each of the other components
has the second, third, etc. highest variance. Thus, the
resulting vectors present an uncorrelated orthogonal
basis set.

Figure 1 shows the result of the PCA applied to the
training data set. The figure shows the data separated



Table 2: Destribution of training and testing records

Normal DoS Probe

U2R R2L Total

Train 67,343 45,927 11,656
Test 9,711 7,458 2421

52 995 125,973
200 2,754 22,543

into the different attack classes as well as the normal °

class using PCA, i.e., all 5 classes are shown.

Figure 1: Four attack types

4.2 Evaluation Measures

The following are the performance measures used to
evaluate the ensemble classifier:

e Confusion matrix: contains the number of ac-

tual and predicted classifications achieved by o

the classifier.

e False positives (FP): defines the number of de-
tected attacks that are actual normal behavior.

o False negatives (FN): are the wrong predictions
whereby instances that are attacks are classified
as normal.

e True positive (TP): instances that are correctly
classified as normal.

True negatives (TN): attack instances that are
correctly classified.

Accuracy or True positive rate (TPR): percent-
age of correct predictions compared to all pre-
dictions.

Area Under Curve (AUC): describes the curve
between TPR and FPR and the area under the
curve; FPR is calculated as

FP

NN “)
TN+FN

False alarm rate: is calculated as
FP
—_. 5
N )
Detection rate: is calculated as
TN —-FN

N (6)

Precision (P): is calculated as
TP

—_— 7
TP+FP @

Recall (R): is the proportion of instances be-
longing to the positive class that are correctly
predicted as positive and calculated as

TP

TP+FN’ ®)

Fl-score: also known as F-score or F-measure

considers both precision and recall to compute

the score; it is computed as
PXxR
P+R

2 % (©)]



4.3 Results

The experiments from the previous binary classifi-
cation where the outcomes normal and attack were
investigated achieved the following results [16]:

e Accuracy = 92.50%

e AUC=91.62%

e False alarm rate = 14.72%
e Detection rate = 97.95%
e F1 score =93.70%

In addition, in the same paper [16] a compari-
son was done with DNN [37], DBN [27], Autoen-
coder DNN [31], ELM-DBN [30], and DNN2 [32].
From the results we saw that our proposed method
achieved values of 93%, 92% and 92% for preci-
sion, recall and f-measure, respectively and overall
obtained better results with the exception of the clas-
sification accuracy.

The following are the results of the run achieved
during the testing phase. Table 3 shows the confu-
sion matrix whereby 9,391 and 6,680 are correctly
classified as normal and DoS, respectively.

Table 3: Confusion matrix - normal vs. DoS

normal DoS
normal 9,391 320
DoS 778 6,680

The different metric scores are listed in Table 4.
The main measure for IDSs is the false alarm rate,
which should be low, and the detection rate, which
should be high. Results of 3.30% and 89.57% are
achieved, respectively. Other values of importance
are the classification accuracy and AUC with values
of 93.60% and 93.14%, respectively.

Table 4: Various metric scores - normal vs. DoS

Accuracy 0.9360480

AUC 0.9313650

False alarm rate  0.0329523
Detection rate  0.8956820
F1 score 0.9240560

Table 5: Precision, recall, F1-score and support - normal
vs. DoS

Precision Recall Fl-score Support

0.0 0.92 0.97 0.94 9,711

1.0 0.95 0.90 0.92 7,458
avg/total 0.94 0.94 094 17,169

Precision, recall, F1-score and support results are
given in Table 5.

Table 6 displays the confusion matrix showing
8,807 and 2,253 records were correctly classified as
normal and probe, respectively, with 1,072 records
being misclassified.

Table 6: Confusion matrix - normal vs. Probe

normal  probe
normal 8,807 904
probe 168 2,253

A false alarm rate of 9.31% and a detection rate of
93.06% were achieved on the test data set as shown
in Table 7. A classification accuracy of 91.16% was
achieved with an AUC of 91.88%. The F1-score re-
sulted in 80.78%.

Precision, recall, F1-score and support results are
given in Table 8.

Table 9 shows the confusion matrix whereby
9,694 and 892 records are correctly classified as nor-
mal and R2L, respectively.

The different metric scores are listed in Table 10.



Table 7: Various metric scores - normal vs. Probe ) )
Table 10: Various metric scores - normal vs. R2L

Accuracy 0.9116390

AUC 0.9187580

False alarm rate  0.0930903
Detection rate  0.9306070
F1 score 0.8078160

Accuracy 0.8492580

AUC 0.6610710

False alarm rate  0.0017506
Detection rate  0.3238930
F1 score 0.4870320

Table 8: Precision, recall, F1-score and support - normal

vs. Probe Table 11: Precision, recall, F1-score and support - normal
Precision Recall Fl-score Support  vS-R2L
0.0 0.98 0.91 0.94 9,711 Precision Recall Fl-score Support
" lt.? 8;; 83‘; 82; 1;"1%; 0.0 0.84 1.00 0.91 9,711
avetota ; : ; : 1.0 098  0.32 049 2,754
avg/total 0.87 0.85 0.82 12,465
Results of 0.17% and 32.39% are achieved for false
alarm rate and detection rate, respectively. Other val- Table 12: Confusion matrix - normal vs. U2R
ues of importance are the classification accuracy and
AUC with both achieving 89.93%. normal U2R
Precision, recall, F1-score and support results are normal 9,697 14
given in Table 11. U2R 156 44

Table 12 displays the confusion matrix showing
that 9,697 and 44 records were correctly classified
as normal and U2R, respectively, with 170 records Table 13: Various metric scores - normal vs. U2R
being misclassified.

A false alarm rate of 0.14%, and a detection rate of
22.00% were achieved on the test data set as shown
in Table 13. A classification accuracy of 98.28% was
achieved with an AUC of 60.93%. The F1-score re-
sulted in 34.11%.

Precision, recall, F1-score and support results are
given in Table 14.

Accuracy 0.9828470

AUC 0.6092790

False alarm rate  0.0014417
Detection rate  0.2200000
F1 score 0.3410850

Table 14: Precision, recall, F1-score and support - normal

vs. U2R
Table 9: Confusion matrix - normal vs. R2L Precision Recall Fl-score Support
normal R2L 0.0 0.98 1.00 0.99 9,711
1.0 076  0.22 0.34 200
normal 9,694 17 avg/total 098 098 098 9911

R2L 1,862 8§92

10



Figure 2 shows the summary of the results in a
graph. Again, we can see the results obtained for the
five measures and the four different types of attacks.
As can be seen, the accuracy achieved for all attack
classes are fairly high ranging between 85.93% to
98.28%. However, given the unbalanced nature of
having far less samples for attack classes R2L and
U2R, the AUC and other measures for the same are
rather low. However, the false alarm rate for R2L
and U2R attacks are very low with 0.17% and 0.14%,
respectively.

The class imbalance issue is a well-known prob-
lem [44]. Different imbalance solutions to this prob-
lem fall into two major categories: sampling based
approaches and cost function based approaches. The
idea behind cost function based approaches is that
false negatives are scored higher in terms of the cost
function than false positives. The sampling based
approaches consists of undersampling, oversampling
and hybrid methods. The idea behind oversam-
pling and undersampling is that either samples are
removed from the majority class or are added to the
minority class, respectively. The hybrid method rep-
resents a mix between under- and oversampling.

5 Conclusion

Different methods for IDSs have been proposed in
the past and many of these systems implement a
data mining approach whereby the data mining ap-
proaches can be classified into clustering and clas-
sification approaches. In this paper, a classification
model using deep neural networks was investigated.
In particular, the NSL-KDD data set was used ap-
plying a deep neural network ensemble technique.
The ensemble technique comprised of different deep
neural network architectures such as an autoencoder,
a deep belief neural network, a deep neural network,
and an extreme learning machine. The most impor-
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tant measures to evaluate in this area are the detec-
tion rate and false alarm rate. The detection rate is
the fraction of the difference between the attack in-
stances that are correctly classified and the instances
that are falsely classified as normal, and attack in-
stances that are correctly classified. The false alarm
rate is the fraction of detected attacks that are nor-
mal and attack instances that are correctly classified.
Other measures considered are classification accu-
racy, AUC, precision, recall, and F-measure.

The results revealed that the accuracy achieved
for all attack classes are fairly high ranging between
85.93% and 98.28%. In addition, the AUC, detection
rate and Fl-score are high for the DoS and Probe
attack classes. However, the results for the attack
classes R2L and U2R are rather low. The reason for
this is the class inbalance given that there are only
200 and 2,754 samples in the test set for R2L and
U2R, respectively, compared to the overall total of
22,543 samples. However, in terms of false alarm
rate, which is an important feature for IDSs, R2L and
U2R achieve good results with values of 0.17% and
0.14%, respectively.
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