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Abstract Image segmentation is one important process in image analysis and
computer vision, and is a valuable tool that can be applied in fields of image
processing, health care, remote sensing, and traffic image detection. Given
the lack of prior knowledge, unsupervised learning techniques like clustering
have been largely adopted. Fuzzy clustering has been widely studied and suc-
cessfully applied in image segmentation. In situations such as limited spatial
resolution, poor contrast, overlapping intensities, noise and intensity inhomo-
geneities, fuzzy clustering can retain much more information than the hard
clustering technique. Most fuzzy clustering algorithms have originated from
Fuzzy C-Means (FCM) and have been successfully applied in image segmen-
tation. However, the cluster prototype of the FCM method is hyper-spherical
or hyper-ellipsoidal. FCM may not provide the accurate partition in situa-
tions where data consists of arbitrary shapes. Therefore, a Fuzzy C-Regression
Model (FCRM) has been proposed whose prototype is hyper-planed and can
either be linear or nonlinear allowing for better cluster partitioning. Thus,
this paper implements FCRM and applies the algorithm to color segmenta-
tion. The results show that FCRM obtains more accurate results compared to
other fuzzy clustering algorithms.

Keywords Color image segmentation · fuzzy c-regression

1 Introduction

Image segmentation [1,2] is a necessary first process in image analysis and com-
puter vision by correctly classifying the pixels of an image in decision-oriented
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applications. The essential goal of image segmentation is to partition an im-
age into uniform and homogeneous attribute regions based on some likeness
measure. Due to the variety and complexity of images, image segmentation
is still a very challenging research topic. Various techniques have been intro-
duced for object segmentation and feature extraction. Basically, segmentation
approaches for images are based on the discontinuity and similarity of image
intensity values [3]. Discontinuity is an approach which partitions an image
based on abrupt changes. According to the predefined criteria, the similarity
approach is based on partitioning an image into similar regions. Researchers
have proposed a variety of techniques to tackle the challenging problem of
image segmentation. In general, the image segmentation can be divided into
four different categories [4]: thresholding, edge detection, region extraction,
and clustering.

Thresholding [5] is one of the most popular approaches for image segmen-
tation because of its simplicity. Image thresholding partitions an image based
on gray levels or intensity values of the pixels. The objective of thresholding
is to generate a binary representation of the image and classify each pixel into
two categories, “dark” or “light”. The challenge of thresholding is to find a
correct gray level threshold, which can partition an image into a foreground
and background.

Edge Detection [6] is one of the most frequently used techniques in image
segmentation. The image edges are detected and grouped into contours or
surfaces to represent the boundaries of the objects. Edge detection aims to
segment an image by finding and placing sharp discontinuities in gray level
images. A very large amount of edge detection techniques are available. Each
technique is designed to find certain types of edges.

Region extraction techniques [7] divide the entire image into sub-regions
based on some criteria. These approaches make use of similarity in intensity,
color, and texture to determine the partitioning of an image. Basically, there
are two types of region-based methods [8]. One is a region growing approach,
which starts with a set of seed points and the regions grow by appending the
neighboring pixels around the seed points with similar properties. The major
challenges of this approach include how to select appropriate seed points and
how to select suitable criteria during the growing process.

Markov Random Field-based (MRF) techniques [9] have recently been ap-
plied in image segmentation. The technique is based on the assumption that
the true image can be viewed as a realization of a Markov random field with
a distribution that can capture the spatial context of a scene [10]. The seg-
mentation problem is an optimization problem that maximizes the marginal
probabilities or posterior marginals by the given prior distribution of the true
image and the observed noisy image. However, the MRF approaches are quite
computationally expensive, and they require fairly accurate knowledge of the
ground truth of the image.

Clustering is a process that can classify the objects or patterns into a pre-
defined number of clusters such that the objects within a cluster have similar
properties. In general, clustering methods can be divided into hierarchical and
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partitional approaches [11]. Hierarchical algorithms produce a nested series of
partitions while partitional algorithms produce only one partition. Due to the
fact that construction of a dendrogram is computationally prohibitive, parti-
tional algorithms have gained more attention in image segmentation. Parti-
tional algorithms include two main clustering strategies [12]: the hard cluster-
ing scheme and the fuzzy clustering scheme. The conventional hard clustering
methods classify each object to only one cluster. As a consequence, the results
are crisp. On the other hand, fuzzy clustering allows the objects to belong
to two or more clusters with varying degrees of membership. Fuzzy clustering
plays a significant role in various problems such as feature analysis, systems
identification, and classification design [13]. Fuzzy clustering is more realistic
than hard clustering due to the ability of handling impreciseness, uncertainty,
and vagueness for real-world problems.

Fuzzy clustering has been widely studied and successfully applied in image
segmentation. In situations such as limited spatial resolution, poor contrast,
overlapping intensities, noise and intensity inhomogeneities, fuzzy clustering
can retain much more information than the hard clustering technique. Among
the fuzzy clustering methods, Fuzzy C-Means (FCM) [14] is one of the most
popular methods. FCM classifies an image into different clusters using an
iterative method. The image is represented in various feature spaces, and FCM
groups similar data points that are dependent on the distance of the pixels to
the centroids in the feature domain.

The Fuzzy C-Regression Model (FCRM) was introduced by Hathaway and
Bezdek [15,16]. Due to their excellent capability of describing complex sys-
tems in a human intuitive way, FCRM is capable of handling perceptual un-
certainties and describing nonlinear system. FCRM, which can be viewed as
an extension of FCM, divides the data set into a group of different regression
models. Unlike FCM, the clustering prototype of FCRM is a hyper-plane while
FCM is hyper-spherical.

However, because of the complexity of image segmentation and given that
only partial prior knowledge is provided, the segmentation result would be
poor if a supervised method was adopted. Thus, the unsupervised method
is a better choice to solve such a problem. Although fuzzy theory has been
employed in image segmentation, the application of FCRM to color images
has been limited. In this paper, we explore the applicability and soundness of
FCRM in color image segmentation. Although FCM can partition the fuzzy
space efficiently, it does not take linearity of the divided data into consider-
ation. In contrast, the FCRM clustering algorithm with hyperplane-shaped
cluster prototypes has much more explanatory power, especially due to its
multivariate nature.

The remainder of the paper is organized as follows. Section 2 lists the re-
lated work regarding fuzzy image partitioning. Section 3 describes the fuzzy
c-regression model and the proposed approach applied to color image segmen-
tation. Experimental results are presented in Section 4, and conclusions are
drawn in Section 5.
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2 Related Work

Related work with regards to the use of fuzzy theory in image segmentation in-
clude rule-based methods, fuzzy-geometrical methods, information theoretical
methods, Type II thresholding methods, and fuzzy clustering methods [17].

Past research related to rule-based methods use fuzzy rules to determine a
threshold in image segmentation. Images are considered as typical nonstation-
ary signals. Fuzzy rule-based image processing techniques are applied to noise
removal and edge extraction. A novel approach for enhancing the results of
fuzzy clustering for solving image segmentation problems is introduced in [18].
A Sugeno-type rule-based system is developed to interact with the clustering
result obtained by the FCM algorithm. In [19], an approach which combines an
associative restoration algorithm with a fuzzy image enhancement technique
is presented and is applied in electronic portal images in radiotherapy. How-
ever, fuzzy rule based segmentation is sensitive to both the structure of the
membership functions and parameter value selections. Thus, a generic fuzzy
rule-based segmentation technique that tries to solve the problem of manual
selection of the parameters of the fuzzy membership is introduced in [20].
This proposed technique is application-independent and incorporates spatial
relationships between pixels. Fuzzy Rules for Image Segmentation incorporat-
ing Texture features (FRIST) is proposed in [21]. The fractal dimension and
contrast features of texture are incorporated in FRIST by considering image
domain specific information.

Fuzzy-geometrical methods [22], which focus on local image information,
minimize or maximize fuzzy geometrical measures, such as compactness [23].
In [24], a new approach to multidimensional data clustering is described. The
approach developed a “Radar” diagram shape matching methodology to ac-
complish the fuzzy geometric features technique for man-machine expert sys-
tems. A new quantitative index for image segmentation using the concept of
homogeneity within regions is defined in [26]. The proposed index shows that
the fuzzy geometry based thresholding algorithms produced a single stable
threshold for a wide range of membership variations. A semi-supervised FCM
technique called GG-FCM is used to add geometrical information during clus-
tering [25]. The approach is not only based on spectral information obtained by
FCM, but also takes into consideration the geometrical relationship between
neighboring pixels.

Related work on information theoretical methods uses measurements such
as fuzzy entropy, index of fuzziness, and fuzzy divergence to minimize or max-
imize fuzzy information. In [27], a new measure called divergence between two
fuzzy sets is introduced and a tailored version of the probability measure of a
fuzzy event is also used for image segmentation. A complete method can be
viewed as a weighted moving average technique, greyness ambiguity being the
weights is introduced in [28]. An image thresholding approach based on the
index of nonfuzziness maximization of the 2-D grayscale histogram is intro-
duced in [29], and has shown that the approach is more robust when applied
to noisy images.
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Type II thresholding methods interpret image information as Type II. In
[30], an evolving fuzzy classifier approach that is able to adapt and evolve
at an on-line machine vision system is introduced. In [31], a new modified
thresholding measures for MRI brain images using type-1 and type-2 fuzzy sets
is presented. An Interval Type 2 (IT2) fuzzy entropy based approach is used
to compute optimum thresholds for multistage gray scale image segmentation
in [32]. An automatic leukocyte segmentation using intuitionistic fuzzy and
interval Type II fuzzy set theory in pathological blood cell images is presented
in [33]. The use of intuitionistic fuzzy set and interval Type II fuzzy set can
consider more uncertainities and different types of uncertainty as compared to
basic fuzzy set theory.

Fuzzy clustering methods classify all image pixels into different segments.
Up to now, FCM is one of the most commonly used methods in image seg-
mentation, and there have been many variants of fuzzy clustering algorithms
that originated from FCM. A modified fuzzy c-means clustering algorithm for
MR brain image segmentation is introduced in [34]. The proposed algorithm
extracts a scalar feature value from the neighborhood of each pixel. It con-
verges faster than standard FCM in the case of mixed noise. An improved
FCM algorithm for image segmentation, which introduces a tradeoff weighted
fuzzy factor and a kernel metric is introduced in [35]. The proposed algorithm
using a tradeoff weighted fuzzy factor can accurately estimate the damping
extent of neighboring pixels. FCM is sensitive to noise in the image since it
ignores the spatial information contained in the pixels. A novel fuzzy cluster-
ing algorithm with non-local adaptive spatial constraints is presented in [36].
The approach uses an adaptive spatial parameter for each pixel to guide the
noisy image segmentation process. Reference [37] proposes the weighted image
patch-based FCM algorithm for image segmentation. The algorithm improves
its robustness to noise by incorporating local spatial information embedded
within the segmentation process. In color image segmentation, it is difficult
to analyze the image on all of its colors. Soft computing techniques namely
FCM, possibilistic fuzzy c-means, and competitive neural networks have been
used to group likely colors [38]. A novel initialization scheme to determine
the cluster number and obtain the initial cluster centers for the FCM algo-
rithm to segment color images is introduced in [39]. The initialization scheme
called hierarchical approach is proposed to integrate the splitting and merging
techniques to obtain the initialization condition for FCM. The proposed algo-
rithm can obtain the reasonable cluster number for any kind of color images.
An Adaptive Neuro-Fuzzy Color Image Segmentation (ANFCIS) approach is
presented in [40]. The proposed algorithm performs color image segmentation
using multilevel thresholding, which consists of a multilayer perceptron-like
network.

Most fuzzy clustering algorithms have originated from FCM, and have been
successfully applied in image segmentation. However, the cluster prototype of
the FCM method is either hyper-spherical or hyper-ellipsoidal. FCM may not
provide the accurate partition in situations where data consists of arbitrary
shapes. On the other hand, the prototype of the FCRM method is hyper-planed
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and can either be linear or nonlinear. Thus, this paper implements FCRM and
applies it to color segmentation. The results show that FCRM obtains more
accurate results compared to other fuzzy clustering algorithms. Furthermore,
besides presenting FCRM’s competitiveness with respect to the other fuzzy
clustering algorithms, FCRM’s practical value is demonstrated when applied
to the task of color image segmentation.

3 Proposed Approach

This section first describes the color space that is used for the proposed color
segmentation approach, followed by the proposed fuzzy c-regression model
clustering approach, and the cluster validation techniques used for the evalu-
ation of the approach.

3.1 CIE-L*A*B* Color Space

Color space is a way of representing color information based on certain cri-
teria. Color perceived by human-beings combines primary colors which are R
(red), G (green), and B (blue). By using either linear or nonlinear transforma-
tions, other kind of color representations or spaces can be derived from the R,
G, and B representation [41]. Color spaces like RGB, HSV (Hue-Saturation-
Value) [42], and CIE-L*A*B* [43] have been successfully applied in color image
segmentation. In this paper, the CIE-L*A*B* color space is selected and ex-
plored in color image segmentation. CIE-L*A*B* is a color-opponent space
with dimensions L, A, and B. L denotes as lightness, and A and B are the
color-opponent dimensions. The CIE-L*A*B* color space includes all perceiv-
able colors and it is device independent, which means that the colors are
independent of the device they are displayed on. Specifically, L with a range
between 0 and 100 represents the lightness; 0 represents the darkest black,
while 100 represents the brightest white. The red-green opponent colors are
represented by the A axis. The yellow-blue opponent colors are represented by
the B axis. Both A and B have negative and positive values. Negative values
of A represent green colors while positive values of A represent red colors.
Similarly, negative values of B represent yellow colors, and positive values of
B represent blue colors. The range of A and B can be either ±100 or ±128
depending on the specific implementation.

3.2 Fuzzy C-Regression Model Clustering

The fuzzy c-regression model clustering algorithm has become popular the past
few years since the resulting model can explain and describe complex systems
in a human intuitive way. Takagi and Sugeno [44] introduced the well-known
T-S fuzzy model to describe a complicated nonlinear system. A T-S fuzzy
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model consists of a set of fuzzy rules, each describing a local input-output
relation as follows.

Rule i: IF x1 is Ai
1 and ... and xM is Ai

M THEN

yi = θ0i + θ1i x1 + ...+ θMi xM (1)

where X = [x1, ..., xM ] is the system input, M is the dimension of input
vector, i = 1, ..., c is the number of fuzzy rules, yi is the ith output, θMi is the
consequent parameter of the ith output.

Fuzzy clustering as one of the soft computing techniques can allow the
data points to belong to more than one cluster. Fuzzy clustering has been
successfully applied in data analysis, pattern recognition, and image segmen-
tation [38]. The shell clustering algorithms such as FCM have been largely
applied in image segmentation. The shell clustering algorithms detect the spe-
cial geometrical shapes like circles, rectangles, hyperbolas, and ellipses using
the Euclidean distance measure [38]. Unlike the shell clustering algorithms, the
Fuzzy C-Regression Model (FCRM) [15,16], which was introduced by Hath-
away and Bezdek in 1993, assumes that the data is drawn from c different
models instead of one single model. The c different models represent c hyper-
plane-shape clusters. The FCRM clustering algorithm is an affine T-S model
with a linear prototype.

Let S = (x(k), yk), k = 1, ..., N be a set of input-output sample data pairs,
where N is the number of patterns, xk = [x1, x2, ..., xM ] ⊂ Rn is the kth input
data vector, M is the number of input variables, y is output vector, yk is the
kth desired output for xk, and θi = [b0i , b

1
i , ..., b

M
i ] is the parameter vector of

the corresponding local linear model. Assume that the data pairs in S are
drawn from c different fuzzy models. The ith hyper-plane-shaped cluster of
the kth input can be denoted as:

yik = b0i + b1ixk1 + ...+ bMi xkM

= [xk, 1] · θTi , i = 1, ..., c
(2)

The cost function of the FCRM clustering algorithm is defined as:

J(S;U, θ) =
N∑

k=1

c∑
i=1

(µm
ik)E2

ik(θi) (3)

where the distance Eik(θi) is defined as

Eik(θi) = |yk − [xk1] · θTi | (4)

m is fuzzy weighted exponent and µik is the membership degree of xk to
the ith hyper-plane-shaped cluster. The membership values µik have to satisfy
the following constraints:

µik ∈ [01], i = 1, 2, .., c; k = 1, 2, ....N (5)
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c∑
i=1

µik = 1, k = 1, 2, ..., N (6)

The fuzzy c-regression model clustering algorithm is summarized as follows
[15,16]. Given data S, set m > 1 and specify the regression models, choose an
error measure and a termination threshold ε > 0, and initialize U (0) randomly.

1. Repeat for l = 1, 2, ...

2. Calculate the c model parameters θ
(l)
i , which globally minimizes the cost

function
3. Update U (l) with Eik(θ

(l)
i ) to satisfy

U
(l)
ik =

{
[
∑c

j=1(Eik

Ejk
)

2
m−1 ]−1, if Eik > 0 for 1 ≤ i ≤ c.

0, otherwise
(7)

4. Until ||U (l) − U (l−1)|| ≤ ε, then stop; otherwise, l = l + 1 and return to
Step 1

In this paper, the FCRM clustering algorithm is applied to color image
segmentation. The procedures of the proposed approach using FCRM in color
image segmentation can be summarized into four phases: image pre-processing,
FCRM clustering, image reconstruction, and evaluation.

Image pre-processing: the images are converted from the RGB color
space to the CIE-L*A*B* color space during this phase. The *A and *B values,
which are extracted from the RGB color space, serve as the color markers in
the A*B* space.

FCRM clustering: the A*B* space image data is given, and the number
of clusters is fixed during this phase. A FCRM clustering algorithm is used to
partition the given data into a fixed number of clusters.

Image reconstruction: the cluster results from the FCRM clustering
step is used to reconstruct the image in grayscale-level during this phase.

Evaluation: the performance of the cluster results is evaluated using the
results from the FCRM clustering process. The performance of the proposed
algorithm is evaluated with three validity indices (explained in the following
section). In addition, two other measures commonly used to access FCRM are
calculated during this phase.

3.3 Clustering Validation Techniques

The aim of clustering validation is to evaluate the clustering results by finding
the best partition that fits the underlying data best. Thus, cluster validity is
used to quantitatively evaluate the results of clustering algorithms. Compact-
ness and separation are two widely considered criteria for measuring the quality
of the partitioning of a data set into different numbers of clusters. Conven-
tional approaches use an iterative approach by choosing different input values,
and they select the best validity measure to determine the “optimum” number
of clusters. A list of validity indices for fuzzy clustering is listed below.
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3.3.1 Partition Coefficient (PC) Index

The Partition Coefficient (PC) is defined as [15]:

PC =
1

n

n∑
i=1

c∑
j=1

u2ij (8)

PC obtains its maximum value when the cluster structure is optimal.

3.3.2 Partition Entropy (PE) Index

The Partition Entropy (PE) was defined as [48]:

PE = − 1

n

n∑
i=1

c∑
j=1

uij logb(uij) (9)

where b is the logarithmic base. PE achieves its minimum value when the
cluster structure is optimal.

3.3.3 Modified Partition Coefficient (MPC) Index

Modification of the PC index, which can reduce the monotonic tendency, was
proposed by Dave in 1996 [49].

MPC = 1− c

c− 1
(1− PC) (10)

where c is the number of clusters. An optimal cluster number is found by
maximizing MPC to produce the best clustering performance for a data set.

4 Experiments and Results

This section describes the experimental setup used, and the results obtained by
the experiments conducted. In particular, a comparison of the cluster perfor-
mance in the *A*B space is conducted applying FCM, GK (Gustafson-Kessel),
and the proposed FCRM approach. Then, the different validity indices are
compared with, followed by a comparison of the mean square error and the
peak-signal-to-noise ratio. The last subsection shows the segmentation results.

4.1 Experimental Setup

The experiments are implemented and evaluated on an ASUS desktop (In-
tel(R) Dual Core I3 CPU @3.07 GHz, 3.07 GHz) Matlab Version 7.13. In
order to evaluate the performance of the proposed method, the algorithm has
been tested using 15 images from UC Berkeley repository [45] for color image
segmentation. In addition, the two other fuzzy clustering algorithms, FCM
and Gustafson-Kessel (GK), have been used to compare FCRM with. Table 1
lists the required parameters using FCRM.
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Table 1: Parameters and their values of the proposed FCRM algorithm

Parameter Value
Maximum number of cluster 10

Maximum iteration 50
Image data IMG1-15

Fuzzification coefficient (m) 2

4.2 Experimental Study

4.2.1 Comparison of cluster performance in *A*B space

The cluster performance of IMG1 (all fifteen images are denoted by their
number) with c = 3 is displayed in Figure 1. The figure on the left is the
original image. The remaining three figures show the cluster centers in CIE-
L*A*B* color space using FCM, GK, and FCRM, respectively. The three
hyper-sephecial centers obtained by FCM and GK, and the three hyper-plane-
shaped clusters obtained by FCRM are listed in Table 2.

IMG1-eps-converted-to.pdfABFCM1-eps-converted-to.pdfABGK1-eps-converted-to.pdfABFCRM1-eps-converted-to.pdf

Fig. 1: Original image, FCM, GK, and FCRM with c=3 in *a*b color space

Table 2: FCM, GK, and FCRM using three different indices (PC, PE and
MPC)

FCM GK FCRM

Cluster 1 (151.73, 168.49) (122.26, 146.33) y1 = 0.3297× (x− 80) + 171.2430

Cluster 2 (103.24, 175.97) (114.69, 132.16) y2 = 1.1788× (x− 101.34) + 110

Cluster 3 (118.33, 144.69) (135.42, 158.93) y3 = 0.4578× (x− 80) + 142.315

As shown in Figure 1, the proposed FCRM partitions the image into
3 hyper-planed clusters, while FCM and GK group the image into hyper-
spherical clusters, respectively. The FCRM method provides better results of
the constructed fuzzy model as compared to FCM and GK.

4.2.2 Comparison using different validity indices

Table 3 lists the cluster performance of FCM, GK, and FCRM using validity
index PC, PE, and MPC, respectively. As shown in the table, the values in
bold denote the best values obtained from the three different validity indices.
In most cases, FCRM has the better performance compared to FCM and GK.
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Table 3: FCM, GK, and FCRM using three different indices (PC, PE and
MPC)

PC PE MPC
FCM GK FCRM FCM GK FCRM FCM GK FCRM

IMG1 0.77 0.77 0.81 0.44 0.44 0.35 0.65 0.65 0.71

IMG2 0.79 0.82 0.78 0.38 0.34 0.39 0.68 0.73 0.68

IMG3 0.72 0.69 0.78 0.50 0.55 0.40 0.58 0.53 0.67

IMG4 0.68 0.70 0.80 0.57 0.53 0.35 0.51 0.54 0.70

IMG5 0.67 0.68 0.80 0.58 0.56 0.36 0.51 0.52 0.70

IMG6 0.66 0.83 0.81 0.56 0.32 0.35 0.50 0.75 0.71

IMG7 0.88 0.83 0.88 0.23 0.30 0.22 0.81 0.75 0.83

IMG8 0.77 0.77 0.82 0.42 0.41 0.33 0.66 0.65 0.73

IMG9 0.74 0.75 0.79 0.46 0.45 0.38 0.61 0.63 0.68

IMG10 0.69 0.72 0.78 0.55 0.48 0.39 0.54 0.58 0.67

IMG11 0.75 0.77 0.77 0.46 0.40 0.41 0.62 0.66 0.66

IMG12 0.75 0.74 0.80 0.46 0.46 0.37 0.62 0.61 0.69

IMG13 0.75 0.74 0.83 0.45 0.47 0.31 0.63 0.62 0.74

IMG14 0.85 0.84 0.87 0.28 0.30 0.25 0.77 0.76 0.80

IMG15 0.65 0.66 0.78 0.62 0.60 0.40 0.48 0.48 0.67

In addition, the best cluster number of FCM, GK, and FCRM obtained by
using PC, PE, and MPC are listed in Table 4. In most cases we can see that
the best cluster number is 2 when using PC, PE, and MPC as the validity
index.

4.2.3 Comparison with MSE and PSNR

Mean Square Error (MSE) [46] and Peak Signal-to-Noise Ratio (PSNR) [47]
are used as the performance indices in fuzzy modeling, which are defined as:

MSE =
1

n

n∑
k=1

(yk − ŷk)2 (11)

PSNR =
10× (255× 255/MSE)

log(10)
(12)

Table 5, 7, 9 list the MSE of the 15 images using FCM, GK, and FCRM,
respectively. Table 6, 8, 10 list the PSNR of the 15 images obtained from FCM,
GK, and FCRM, respectively. The results show that FCM, GK and FCRM
show the same trend regarding MSE and PSNR. As the number of clusters
increase, the values of MSE decrease, and the values of PSNR increase for the
15 tested images. In addition, FCRM has a better performance than FCM and
GK both in terms of MSE and PSNR.
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Table 4: Best cluster number of FCM, GK and FCRM using PC, PE and MPC

PC PE MPC
FCM GK FCRM FCM GK FCRM FCM GK FCRM

IMG1 3 2 3 2 2 2 2 2 2

IMG2 2 2 2 2 2 3 2 2 7

IMG3 2 2 2 2 2 2 2 2 2

IMG4 2 2 2 10 10 10 2 2 10

IMG5 2 2 2 2 2 2 2 2 2

IMG6 2 2 2 3 3 3 2 2 2

IMG7 2 2 2 2 2 2 2 2 2

IMG8 2 2 2 3 2 3 2 2 3

IMG9 2 2 2 2 2 2 2 2 2

IMG10 2 2 5 2 2 2 2 2 2

IMG11 2 2 4 2 2 3 2 2 4

IMG12 2 2 2 2 2 2 2 2 2

IMG13 2 2 5 2 2 3 2 2 3

IMG14 2 2 2 2 2 10 2 2 2

IMG15 2 2 2 2 2 2 2 2 2

4.2.4 Comparison on segmentation results

The cluster results are used to reconstruct the image in grayscale level as
shown in Figures 2 and 3 with c = 3. As show in the figures, the FCM, GK,
and FCRM can segment the images clearly.

5 Conclusion

Most fuzzy clustering algorithms have been successfully applied in image seg-
mentation. However, the disadvantage they have is that the cluster prototype
of FCM (Fuzzy C-Means) is either hyper-spherical or hyper-ellipsoidal. There-
fore, FCM may not provide accurate partitioning in circumstances where data
is better modeled by arbitrary shapes. Thus, a Fuzzy C-Regression Model
(FCRM) clustering algorithm has been introduced whose prototype is hyper-
planed and can either be linear or nonlinear. The FCRM clustering algorithm
and applied it to color image segmentation. FCRM is an affine T-S model,
which has been successfully used in non-linear system. Due to the complexity
of implementation, FCRM has never been used in color image segmentation
and was thus explored in this investigation.

The experiments conducted used 15 images that were taken from the UC
Berkeley repository. The FCRM was compared against two comparison algo-
rithms (FCM and GK) for color image segmentation. Three validity indices
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Table 5: MSE using FCM with different cluster number

c=2 3 4 5 6 7 8 9 10

IMG1 0.59 0.41 0.32 0.26 0.21 0.19 0.16 0.14 0.13

IMG2 0.37 0.26 0.19 0.16 0.13 0.12 0.10 0.09 0.08

IMG3 0.79 0.54 0.40 0.32 0.27 0.23 0.20 0.18 0.16

IMG4 1.05 0.70 0.50 0.42 0.34 0.29 0.26 0.23 0.21

IMG5 0.39 0.27 0.21 0.16 0.14 0.12 0.10 0.09 0.08

IMG6 0.48 0.41 0.33 0.28 0.23 0.20 0.17 0.15 0.14

IMG7 0.41 0.27 0.26 0.25 0.21 0.17 0.16 0.14 0.13

IMG8 0.50 0.34 0.25 0.20 0.17 0.14 0.13 0.11 0.10

IMG9 0.97 0.66 0.50 0.40 0.33 0.29 0.25 0.22 0.20

IMG10 0.99 0.69 0.56 0.46 0.39 0.33 0.29 0.26 0.23

IMG11 0.93 0.62 0.47 0.38 0.31 0.27 0.24 0.21 0.19

IMG12 0.79 0.55 0.43 0.41 0.34 0.30 0.26 0.23 0.21

IMG13 0.64 0.45 0.34 0.27 0.23 0.20 0.17 0.15 0.13

IMG14 0.73 0.49 0.37 0.24 0.19 0.17 0.15 0.13 0.13

IMG15 0.58 0.40 0.30 0.24 0.20 0.18 0.16 0.14 0.13

have been used as well as MSE and PSNR were measured. The images were
reconstructed using the grayscale level. The experimental results revealed that
FCRM achieves better results in most cases than the other approaches based
on the aforementioned measures.

As for future work, FCRM is similar to other fuzzy partition techniques,
thus, cluster centroids and the number of clusters should be decided in advance.
However, for most unknown environments, the appropriate and exact number
of clusters is unknown in practice. A new cluster validity criterion needs to
be developed to determine the appropriate number of clusters. In addition,
FCRM is very sensitive to the initialization. A good initialization results in
good quality image segmentation, while an unsuitable initialization returns
poor results. Thus, in future, a new technique for automatically finding the
exact number of clusters as well as obtaining good initialization need to be
investigated.
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Fig. 2: Original image, grayscale image using FCM, GK, and FCRM are listed,
respectively
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Fig. 3: Original image, grayscale image using FCM, GK, and FCRM are listed,
respectively (continued)


