Recovery Algorithm to Correct Silent Data Corruption
of Synaptic Storage in Convolutional Neural Networks

Arighna Roy and Simone A. Ludwig

Department of Computer Science, North Dakota State University, Fargo, ND, USA,
{arighna.roy,simone.ludwig} @ndsu.edu

Abstract

With the surge of computational power and efficient energy consumption man-
agement on embedded devices, embedded processing has grown exponentially
during the last decade. In particular, computer vision has become prevalent
in real-time embedded systems, which have always been a victim of transient
fault due to its pervasive presence in harsh environments. Convolutional Neu-
ral Networks (CNN) are popular in the domain of embedded vision (computer
vision in embedded systems) given the success they have shown. One problem
encountered is that a pre-trained CNN on embedded devices is vastly affected
by Silent Data Corruption (SDC). SDC refers to undetected data corruption
that causes errors in data without any indication that the data is incorrect, and
thus goes undetected. In this paper, we propose a software-based approach to
recover the corrupted bits of a pre-trained CNN due to SDC. Our approach
uses a rule-mining algorithm and we conduct experiments on the propagation
of error through the topology of the CNN in order to detect the association of
the bits for the weights of the pre-trained CNN. This approach increases the
robustness of safety-critical embedded vision applications in volatile conditions.
A proof of concept has been conducted for a combination of a CNN and a vision
data set. We have successfully established the effectiveness of this approach for
a very high level of SDC. The proposed approach can further be extended to
other networks and data sets.

Keywords: Silent Data Corruption, CNN, AlexNet, Association Rule Mining

1. Introduction

The Artificial Intelligence (AI) problem space has become highly dependent
on Machine Learning (ML) algorithms. AT is an interdisciplinary scientific field
that is used by computer systems to build predictive models. One subfield trains
a computer system to find patterns from historical data. One of the most pop-
ular branches of machine learning is Artificial Neural networks (ANN), which
has become the state-of-the-art in many AI application areas. ANN is based
upon the idea that a machine can learn patterns from data in a similar fashion

Preprint submitted to Elsevier March 30, 2020

to how a human brain performs that task [1]. The concept of ANN was first
introduced in 1943. The strength of ANN comes at the price of high compu-
tational complexity. This is the reason why ANN did not get much attention
until the mid-80s.

Convolutional Neural Network (CNN), which is a specific type of ANN, is
mostly used for computer-vision related problems. Computer vision is a branch
of Artificial Intelligence that is concerned with the automation of tasks related to
human visual systems. CNN is one of the most resource-intensive ANN due to its
complex topology and size. However, with the rise of Graphics Processing Units
(GPU) and distributed computing, CNN started to receive attention applied to
computer-vision related problems. In 2012, the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC), AlexNet (a specific type of CNN), established
CNN to be the state-of-the-art method for image data.

Table 1: Complexity of different CNN Architectures

CNN ‘ Year ‘ Parameters
AlexNet [3] | 2012 | 60M
Clarify [7] | 2013 | 65M
OverFeat [5] | 2013 | 70M
VGG [8] | 2014 | 135M

High-performance clusters with GPU acceleration can take care of the train-
ing phase of a neural network [2], which consumes the largest share of the
computation. However, even pre-trained neural networks demand high memory
due to the large number of connections in each layer (input, intermediate re-
sults, and output) in the network. The 8-layer AlexNet needs 240 MB to store
61 million weights [3] in a 32-bit floating-point format, and it is ever-growing.
Table 1 shows how the parameter size for different CNN architectures has grown
over time. For example, the number of weights in AlexNet that was introduced
in 2012 was 60 million; whereas VGG (Visual Geometry Group), introduced in
2014, has 135 million weights.

Embedded systems adopted computer vision using CNN in no time since the
semiconductor industry has evolved drastically over the years. Real-time em-
bedded systems have many applications of advanced Decision Support System
(DSS). A few of the good example applications of such DSS are smart envi-
ronments, fitness monitoring, and military missions [4]. We will narrow down
our discussion to computer vision applications in embedded systems (embedded
vision). Thus, a good example of such a system is the biometric authentica-
tion system implemented in the iPhone [5]. The theoretical background of this
problem is facial recognition, which is a well-known computer vision application.

However, due to the need to accommodate a massive number of weights,
even the testing phase of such networks becomes a bottleneck when it comes to
embedded devices because of the memory space restrictions [6]. An embedded

device is dedicated to a specific task on mechanical or electrical systems [7],
and are often challenged by real-time computing constraints such as inefficient
power management [8]. Specialized architectures such as conv-SRAM (CSRAM)
[9] has been developed to accommodate CNN in microcontrollers, which is the
heart of embedded systems.

Among many real-time constraints, embedded systems suffer from data cor-
ruption due to reduced size and power supply [6]. Often, embedded systems
have to operate in harsh environments, which makes them more prone to er-
rors. For example, rugged embedded systems are designed especially for harsh
environments [6].

Soft error is the predominant challenge in the semiconductor industry [10].
With the rise in the use of real-time embedded systems, off-the-shelf embedded
processors have received a lot of attention lately. These systems are cursed
with having to work in harsh environments. This leads to external radiation
of ionizing particles terrestrial neutron, which is the major source of soft errors
[11]. That, in turn, aggravates the problem of inconsistent supply voltage [12],
which has been a challenge for embedded systems ever since [13]. When the
charge disturbance crosses the fault-tolerance threshold of the hardware, the
data state of the memory cell flips and an undetected error occurs.

There are two types of Soft Errors, Single Event Upset (SEU), and Burst
errors. The scope of our experiments is limited to SEU. Burst errors involve
errors in multiple bits simultaneously. Error detection becomes much more
complex for this type of error. Fortunately, burst errors occur rarely [14]. We
can detect SEU with the help of checksum or parity bits, however, the exact
position of the error remains unknown, which makes it unrecoverable. SEU very
often cause Silent Data Corruption (SDC), which is very prevalent in embedded
systems, and thus, is the prime focus of discussion in this paper.

During the testing phase, CNNs calculate the dot product of the input for
each layer and the corresponding pre-trained weights to generate the output of
that layer, which is then propagated to the next layer and used as input. SDC
can lead to major deviation of the result from the expected, which might lead
to detrimental consequences in systems since embedded vision is used in many
critical real-time decision support systems such as self-driving cars [15].

There has been significant research on making embedded systems hardware
resilient to data corruption. However, most of the robust hardware has a higher
power consumption. For example, 8T and 6T are two varieties of SRAM (Static
Random-Access Memory), and the 8T SRAM cell is a more reliable storage cell
than 6T SRAM at the cost of a 40% higher power consumption. SRAM is used
for the cache memory in embedded devices [16].

2. Related Work

Contemporary work on minimizing the impact of soft errors in embedded-
vision applications can be broadly classified into two types; the first type, which
comprises most of the work in the area, tries to address the problem by making

error-resilient hardware using efficient power management and storage. The
second type is focused on building a software-centric approach to recover the
corrupted bits to reduce the overall impact. Our strategy is based on the latter
category.

The Embedded Vision Engine (EVE) [17] is a specialized architecture aimed
at implementing automotive vision applications (computer vision applied to Ad-
vanced Driver Assistance Systems (ADAS)). EVE provides a fully programmable
architecture that is 4-12 times faster and 4-5 times more energy-efficient.

Intelligent Protection Against Silent (IPAS) output corruption [18] is an
instruction replication procedure to reduce the impact of Silent Output Cor-
ruption (SOC) errors by protecting only vulnerable instructions. Numerous
hardware have evolved to mitigate the need for an embedded vision application.
An SRAM-embedded convolution architecture [9] is designed to overcome the
shortcoming of the architecture designed for generic embedded machine learning
classifiers. It was tested on LeNet-5 CNN trained on the MNIST data set. It
uses voltage averaging on a 266x62 Conv-SRAM (CSRAM) array.

Even with the most sophisticated hardware, embedded systems experience
a substantial amount of silent errors [19]. A software-enabled approach to re-
cover the corrupted bits could be beneficial for that. A generic [20] [21] first
step of that approach is to analyze and identify the fault propagation through
the application. The majority of the work on this type consists of duplication
of instructions [22] to bring robustness against the silent errors, which is not
feasible for CNN based applications due to the size. To give an example of an
application-oriented approach, Augusto [23] proposed a hierarchical approach
to tackle uncertainties of the operational environment of Unmanned Aerial Ve-
hicles (UAV). The gap between the frame rate of the on-board camera and the
observed frame rate on-ground is utilized to build a resilient “UAV swarm?”.

Algorithm-Based Fault Tolerance (ABFT) [24] is a software-based approach
where algorithm-specific techniques are leveraged to detect and repair silent
errors. The foundation of this approach is based on the fact that not all silent
errors have a significant impact on the performance of the application. Being
able to classify the sector where the silent errors cross the tolerance threshold
(impact error bound) narrows down the problem space and reduces the numeric
calculation for recovery. Another set of ABFTs focuses on more generic numeric
operations such as matrix operations. Some of them focus on the checksum and
roll-back recovery methods.

An exciting work that has been done in the area is a hybrid approach of a
hardware and software-based technique [20]. The method leverages a software
approach to identify the sensitive bits and then uses a hardware approach (se-
lective latch hardening) to guard those bits selectively. However, with increased
uncertainty in the environment of embedded applications, it became more and
more challenging to improve the hardware to guarantee the performance of the
embedded vision application. A pure software-based recovery approach can
suffice to serve that purpose.

In this paper, we investigate the sensitivity of SDC through SEU on the
memory bits storing the pre-trained weights of a CNN and the type of layers

(fully connected and convolutional). Once we identify the sensitive bits, we
propose an algorithm to find the association between those bits and to recover
the corrupted bits of the memory cells based on the generated rules of the
association. We will show the experimental results for the different error levels
and recovery rates. There are various techniques to detect the errors that occur
in a RAM, and we will use the method called checksum, which is very commonly
used for the same. Checksum is derived from a block of data in order to detect
errors that occurred or have been introduced during its storage.

3. Approach and Methodology

Association Rule Mining (ARM) [25] has been introduced in 1993. Since
then, it has attracted considerable attention and has been applied in particular
to market basket analysis for which customers’ buying patterns are discovered
from retail sales transactions. ARM is one of the key techniques to detect and
extract useful information from data. ARM’s aim is to identify strong rules
discovered in the data by using some measures of “interestingness” [26]. In par-
ticular, to select interesting rules from the set of all possible rules, constraints on
various measures of significance and interest are used; the best-known measures
are minimum thresholds on support and confidence.

Unfortunately, the task of ARM is computationally expensive, in particular
with large data set sizes as well as when large numbers of patterns exist. Thus,
we have employed the FP-Growth Algorithm that was proposed by Han [27].
The FP-Growth algorithm is an efficient and scalable method for mining the
complete set of frequent patterns by pattern fragment growth. The algorithm
uses an extended prefix-tree structure for storing compressed and crucial infor-
mation about the frequent patterns (named Frequent-Pattern tree (FP-tree)).

Figure 1 shows the overall process of building a recovery model, which starts
with training a certain CNN on a certain image data set. Although the proposed
model is generic to any CNN, it must be built on the weights of a pre-trained
CNN to generate the association rules, which are the backbone of this model.
Figure 2 provides a high level overview to replicate the process applied to other
CNNs.

First, we have trained the Alexnet [28] on the CIFAR10 image data set [29],
which yields a set of tensors. The tensors maintain the topology of the network;
hence, those are flattened to combine all the weights. These weights can be
denoted as (W7, Wa, ..., W,,). Thereafter, each weight W; is represented as a
series of thirty-two bits (By, Bi, ..., Bs). Hence, a matrix W is created where
each row signifies the binary representation of the float value of the correspond-
ing weights. A cell from the matrix W can be denoted as W;;, which represents
the j*" bit of the i*" weight.

First, we detect the bits that have the most impact on the accuracy of the
CNN as MSB (Most Significant Bit) (msb0-m). Then we come up with deduc-
tion logic to prioritize the prediction. In our example, the 30" and 29*" bits
always contain certain values without any exception. In case of the prediction of
the corrupted bits, we prioritize these bits to check the observed values. We use

AV 2<L\J 5

ﬂL

Flatten the weights into
a list and portray the bit
representation

Bsi | B3 | B | .. B, Bo
W, |0 0 1 0 1
W, |0 0 0 0 0
W; |0 1 0 0 0
W | 1 1 0 0
W, |0 0 1 0 1
Filter the consecutive
bits having the most
impact on the
performance of CNN
B |Bs | Bs |Bs | B3 | B2 | By | B
Wi 0 |1 1 |0 1 1 |0 |1
W; 0 0 |0 1 0 1 0 0
W; 0 |1 |0 |1 0O |1 |0 |0
Whi |1 |0 |1 |0 1 1 |0 |0
W, 0 0 1 1 0 1 0 1

Transform the bit
values into transaction

format
iz ig i1 in
t i71 is1 i11 io1
12 in2 is2 i1z in2
tn1 i7n-1 isn-1 i1n1 ion-1
tn i?n iﬁn iln iDn

Perform Association
Rule Mining to create

rules
antecedent consequent support confidence
i0=1,i7=0 ig=1 i1=1 0.6 0.9
is=0,i7=0 =0 0.7 0.85

Corrupt one of the
significant bits of W1

By Bs Bs Bs Bz B: B1 Bo

Wi 0 1 1 0 0 1 0 1

Utilize the generated
rules to create the
likelihood of corruption

at each bit

B7 | B6 | B5 | B4 | B3 | B2 | Bl BO
Likelihood 085 0.50 0.60 0.40 050 0.40 070 020
of 0in the
bit (A)
Likelihood 070 0.92 058 0.30 070 0.50 0.60 070
of 1in the
bit (B)
Likelihood 082 0.54 1.03 0.75 1.40 0.80 0.86 029
of
corruption

likelihood of corruption = A/B if the observed value for the bit is 1
else B/A
Predict the bit to be
corrupted that has the
highest likelihood of
corruption

Bs

Figure 1: Flowchart of Methodology

a stochastic approach to build the rest of the recovery model, which is to find the
association of the MSBs within these weights. We have used the FP-Growth
algorithm in [30] to generate the association rules. The binary bit represen-
tation is considered as an individual item for this item set mining problem.
Once we have the rules (for a certain min-confidence and min-frequency), we
can build the recovery function. For a corrupted weight, each of these bits will
be considered individually to calculate the likelihood of being corrupted. We
have assumed that there is only one corrupted bit for each corrupted weight.
For msbi, we find the rules that have msbi=0 in the consequent and the rest
of the MSBs in the antecedent and calculate the sum of confidences of those
rules. Similarly, we calculate the sum of confidences for msbi=1. If the bit
value (0/1) with a higher likelihood does not match with the observed value for
that weight, then it is considered to be the corrupted bit. We further check if
there are multiple MSB that have this mismatch. For such scenarios, the ratio
of the likelihood will be considered to predict the corrupted bit. The likelihood
of a bit to be corrupted is calculated as the inverse ratio of the likelihood of the
observed value of that bit.

Train and store the CNN

Inject SDC in parameters’ bits in isolation and identify the
sensitive bits based on the impact on the test accuracy of the CNN

Create association rules using fp-growth

Replace the rules dictionary inside RMAB algorithm

Corrupt random bits, apply RMAB to recover, collect test
accuracies with both the corrupted and recovered CNN

Figure 2: Process diagram to apply RMAB to other CNNs

Please note that if there are two bits that have the likelihood of corruption
greater than zero, then that indicates that the observed value of that bit has a
lower likelihood of occurrence. Hence, we chose the bit with the higher likelihood
of corruption. In case of the tie (which is fairly rare), we select it randomly.

4. Experimental Setup and Results

We have performed various experiments on a pre-trained AlexNet to evaluate
the effects of soft errors on the classification result. We first investigated how the
soft errors propagate through the layers, and then narrowed down the potential
area for recovery and applied the recovery model.

CNN stands out from the rest of the neural networks because various types
of layers come together to build the network. Nevertheless, each layer has
different shapes and sizes, even within the same type. That makes it inevitable
to investigate it further and look deeper into the architecture of the network.

4.1. Structure of CNN (Aleznet)

We have used the Alexnet for our experiments. Alexnet consists of five
convolutional, five max-pooling, and one fully connected layer, which gives a
total of thirteen layers, including the input and output layers. A pre-trained
Alexnet has twelve sets of weight matrices; each set connects two consecutive
layers. The following is the structure of an AlexNet: (64, 3, 11, 11), (64,), (192,
64, 5, 5), (192,) , (384, 192, 3, 3), (384,), (256, 384, 3, 3), (256,), (256, 256, 3,
3), (256,), (10, 256), (10,).

Each line of the above structure signifies a weight matrix. The last weight
matrix, indicated by (10,) is to connect the last hidden layer to the output
layer. The last hidden layer is fully connected, which is the decision layer. We
have trained this model on the CIFAR10 data set, which has ten image classes.
For obvious reasons, we have ten weights in the final set to connect ten nodes
(each of them calculating the probability of the corresponding class for a specific
input). (10, 256) indicates the weight matrix to connect the last Max-Pooling
layer to the fully-connected layer.

The first weight matrix, indicated by (64, 3, 11, 11), is to connect the input
to the first hidden layer, which is a convolutional layer. We have used 64 filters
in this layer of size (11x11). Each of these filters slides over the input matrix
and collect the RGB values separately. The second index of this (first) weight
matrix is always 3, as the images have depth three because of the three color
channels.

The weight vectors followed by every 4-dimensional matrix are used to con-
nect the convolutional layers to the following max-pooling layers. That explains
why the first dimension of the 4-dimensional matrix always matches the length
of the following vector. The rest of the 4-dimensional weight matrices are to
connect the max-pooling layers to the next convolutional layers.

The following hyper-parameters were used for the experiments and training
of the CNN:

e Number of Epochs = 164
e Learning Rate = 0.1
e Schedule = 81, 122

e Gamma = 0.1

e Optimizer = Stochastic Gradient Descent
e Momentum = 0.9

o Weight Decay = 5e-4

The accuracy of the trained CNN model is 77.22%.

4.2. Sensitivity of CNN to Soft Errors

Accuracy of Corrupted CHN

0001 0.005 001 0.02 0.05 0.07 01
Error Percentage

Figure 3: Accuracy of CNN after corruption vs. percentage of error

Figure 3 displays the accuracy of the Alexnet in the y-axis and the percentage
of the soft error on the x-axis. The percentage of error is calculated based on the
total number of weights in the network. Each weight is chosen randomly, and
one of the 32 bits is randomly selected for each weight. We can see a sharp drop
in the accuracy with the percentage of the soft error increasing until it reaches
0.05 and then it saturates. Please note that the accuracy of the trained model is
77.22%. In the later sections, we will observe that this behavior changes when
we isolate either a layer or a bit index.

4.3. Sensitivity of Layers to Soft Errors

Due to various layer types and sizes in the CNN, we have performed a layer
level investigation. The layers vary significantly in size, which leads to a differ-
ence in impact on the accuracy. The larger a layer is, the more probable it is to
be corrupted, which leads to a stronger influence on the accuracy.

10

800000 4

B00000 4
400000 4
200000 4 l
s . . . S —
o 1 2 i 4 5] 7 8 % 10 11

Layer index of CNN

Size (number of weights)

Figure 4: Number of weights within the layer vs. layer index

Figure 4 shows the size (number of weights it contains) of each layer. We
can clearly see that only four of the layers dominate the volume of the weights,
and all of those are convolutional layers. For further investigation of the layers,
we will continue with the convolutional layers because of their sizes.

First, we examine the effect of the error on the classification accuracy when
we fix a layer for the error injection. As part of this experiment, we have used
the amount of error as the percentage of the layer size. This ensures to maintain
a fixed likelihood of error occurrence for each layer while letting the error be
generated for each layer in isolation.

Interestingly, the accuracy of the model does not depend on the size of the
layer, as shown in Figure 5. Instead, we observe a clear pattern of increasing
accuracy (or decreasing impact) towards the final layer of the neural network.
This indicates that the impact of the level of features (on the classification
accuracy) created at every convolutional layer decreases with the index. Thus,
lower level features (for example, connections) formed at the earlier stage of
the CNN are more critical than higher-level features (for example, shapes or
objects) created in the later stages. For the experiments shown in Figure 5, we
have used a random selection of bits. We have repeated the same experiment
by isolating the bits to inject SDC at each layer and then averaged the accuracy
over all the bits; the results are displayed in Figure 6. In the figure, we can
clearly see that the accuracy of the CNN is not impacted at all when we isolate
the bits. We will investigate individual bits next to identify the reason behind
this behavior.

4.4. Sensitivity of Bits to SDC
Our recovery model leverages the relationship of bit positions on the float
value. We will first investigate the bit level dependency for the impact of SDC

11

a2 B

Accuracy of Corrupted CHN

B B B & 5 B

=]
|

0 2 4 & 8
Layer index of CHN

Figure 5: Accuracy of CNN after corruption (isolated to each layer) vs. layer index

2 B8

Accuracy of Corrupted CNMN
E B &8 & B8 B

[=]
|

0 2 4 B 8
Layer index of CMN

Figure 6: Accuracy of CNN after corruption (isolated to each layer and bit combination) vs.
layer index

12

Frequency of Bits

on the classification accuracy. This will help us to narrow down the problem
in size. The recovery models dependent on selective hardware can also benefit
from this. First, we will plot the frequency of 0/1 for each bit. From Figure
7 we observe that the 30" bit (bit index starts from 0) always contains 0 and
the 29" bit always contains 1. Bits 3, 4, and 5 contain a significantly higher
number of 1s compared to 0s. We will revisit this when looking at the layer-wise
investigation.

2500000

I
2
e T

2000000
1500000
1000000

500000

01 2 3 4 5 & 7 B 9 10 11 12 13 14 15 1 17 18 19 20 21 2 23 2 2B 26 27 28 2 3 31
Bit Index

Figure 7: Binary value frequency vs. bit index

After that, we will investigate the impact of SDC on the classification accu-
racy for each bit. For this, we inject SDC on a specific bit of randomly chosen
weights and calculate the classification accuracy. However, we will isolate each
layer while injecting the SDC and then average the accuracy value later.

In Figure 8, we can clearly see that only a few bits are sensitive to the
error. We will repeat our experiment for each bit with a randomly chosen layer
(without isolating the layer). We did not find any pattern there itself. To
investigate further, we chose random weights and random bits from the weight
for each iteration for injecting the SDC at various levels of error volume.

Next, we will narrow down the area to be recovered for any kind of cor-
ruption. Only certain bits will be monitored using a checksum, which will be
recovered. In Figure 8, we see that before bit 25 there is not much impact of
SDC on the accuracy of CNN. We performed a controlled experiment on the
accuracy of CNN with SDC injected on the last 7 bits (25" — 31°*). In each
iteration, the bit and the weight were chosen randomly.

Figures 9 and 10 show that the impact of SDC is limited to certain bits.
Figure 9 showed the accuracy of the CNN when the SDC were restricted to the
MSBs (25-31), and Figure 10 is for the LSBs (0-24). We can focus on protecting
only the first 7 bits since the accuracy will not be affected by the SDC occurring
on other bits. However, none of the experiments show any significant correlation
with the percentage of error or the amount of SDC injected. The runtime cost

13

Accuracy of Corrupted CNN
E B B8 & 3 B 2 B

u |

012345678 91011121314151617181920021 22032425262 728293031
Bit Index

Figure 8: Accuracy of CNN after corruption (random layer) vs. bit index

Accuracy of Corrupted CHNMN

0.001 0.005 001
Error Percentage

Figure 9: Accuracy of CNN after corruption (isolated to randomly chosen MSB) vs. percentage
of error

14

Accuracy of Corrupted CNN

Error Percentage

Figure 10: Accuracy of CNN after corruption (isolated to randomly chosen LSB) vs. percent-
age of error

of ARM increases exponentially with the number of bits considered. If we can
narrow down the bits having a significant impact, the runtime cost of RMAB
reduces drastically.

4.5. Performance of Recovery Function on Significant Bits

We maintained a checksum bit for Bit 0-7 to detect any occurrence of SDC.
Once an error is detected on these bits, the 29" and 30" bit values are checked
as these two bits always have certain values. If Bit 29 and Bit 30 do not have
the expected values in the corrupted weight, the recovery algorithm is applied to
predict the bit that is most likely to have been corrupted with the combination
of the other bits.

First, we test the performance of the recovery model when the SDCs were
injected on the MSBs being isolated. The results are shown in Figure 11. Bit 29
and Bit 30 are removed from the figure since those are recovered using deductive
logic. However, those were considered for error injection. We see that the model
does not perform so well when the SDC is injected on Bit 31. However, when we
inject the error in randomly chosen bits (Bits 25 to 28) as shown in Figure 12,
we achieve high performance after recovery. The performance of the corrupted
model received a lot of impact even for such a low error rate. Although the
accuracy of the corrupted model does not show a clear trend, the intention of
the experiment was to confirm a high accuracy of the recovered model.

4.6. Performance of Recovery Function on Convolutional Layers

When we repeat the experiments of recovery for isolated layers, we see that
the accuracy values are successfully reached compared to the original model

15

is_recovered
N o
. yEs

Accuracy of Corrupted CHNMN
&

Bit Index

Figure 11: Accuracy of CNN after corruption (random layer) with or without recovery vs. bit
index (only MSB)

is_recovered
o
=

Accuracy of Corrupted CHNN
&

0.005
Error Percentage

Figure 12: Accuracy of CNN after corruption (isolated to randomly chosen MSB) with or
without recovery vs. percentage of error

16

irrespective of the layer (refer to Figure 13).

is_recovered
o
H yes

Accuracy of Corrupted CHNN
&

Layer Index

Figure 13: Accuracy of CNN after corruption (isolated to each layer) vs. layer index

4.7. Holistic Performance of Recovery Function

The real evaluation of the recovery model can be tested with the random
selection of bits and weights, where the accuracy of the model was impacted
the most. In Figure 14, we can see that the performance slightly decreases
(monotonously) with an increasing amount of SDCs. However, even with a 20%
corruption rate (which is enormous in an embedded system environment), the
recovery performance is very good.

The result of each experiment is averaged over thirty iterations to test the
stability of the experimental results. The standard deviation of the accuracy
through the iterations is plotted in Figure 15. The low standard deviation
values of the accuracy for the experiments confirm the stability of the recovery
model. Even though the recovery model did not perform well when the SDCs
were injected on Bit 31 isolated, it performed well when the bits were randomly
selected, which was the major weak area for the corrupted models in embedded
systems.

5. Conclusion and Future Work

This paper addressed the problem of Silent Data Corruption (SDC) on a
pre-trained CNN in embedded systems. The proposed approach employed an
association rule mining algorithm to correct data corruption. We performed
controlled experiments on the propagation of errors through the topology of
the AlexNet trained on the CIFARI10 data set. Further investigations were

17

Accuracy of Corrupted CNN

5 10
Error Percentage

Figure 14: Accuracy of CNN after corruption with or without recovery vs. percentage of error

S gl
@ 4
3
(¥
<
E 34
=
2
=
E
=
2
E 19
(5]

ﬂ_

1 5 10 20
Error Percentage

Figure 15: Standard deviation accuracy values of CNN for multiple experimental iterations
vs. percentage of error

18

conducted to identify the sensitive segments of data based on its impact on
the model performance. Thus, we converted the weights of the pre-trained
network into a set of items (binary strings), and generated rules to detect the
association among the bit values. These rules are then further used to build
a recovery system. For each bit, the likelihood of containing a zero or one,
depending on the state of the remaining bits, were calculated. Finally, we
performed controlled experiments on the recovery algorithm to demonstrate the
performance with various parameters.

The experiments establish the effectiveness of the recovery algorithm at var-
ious levels of data corruption. We have observed that the impact of SDC is
much higher on the performance of the model when we target multiple bits for
corruption on various weights (single bit for each weight, though). The proposed
method successfully recovers the errors, and thus, the performance of the model
does not get affected much even with high levels of corruption.

As for future work, we can extend this work to other CNN models such as
VGG, FaceNet, and with larger image data sets such as CIFAR100. With each
combination of CNN and data set, a new pre-trained model will be prepared
for data corruption, then the sensitive section of the bit level storage must be
identified, and the recovery model needs to be rebuilt based on the new rules of
associations among the sensitive bits.

Acknowledgment

This work used the Extreme Science and Engineering Discovery Environment
(XSEDE), which is supported by National Science Foundation grant number
ACI-1548562.

References

[1] K. Kumar, G. S. M. Thakur, Advanced applications of neural networks and
artificial intelligence: A review, 1J Information Technology and Computer
Science 6 (2012) 57-68.

[2] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. aurelio
Ranzato, A. Senior, P. Tucker, K. Yang, Q. V. Le, A. Y. Ng, Large scale
distributed deep networks, in: F. Pereira, C. J. C. Burges, L. Bottou,
K. Q. Weinberger (Eds.), Advances in Neural Information Processing
Systems 25, Curran Associates, Inc., 2012, pp. 1223-1231.
URL http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.
pdf

[3] S. Han, H. Mao, W. J. Dally, Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding, arXiv
preprint arXiv:1510.00149.

19

[4]

[13]

T. Choudhury, G. Borriello, S. Consolvo, D. Haehnel, B. Harrison, B. Hem-
ingway, J. Hightower, K. Koscher, A. LaMarca, J. A. Landay, et al., The
mobile sensing platform: An embedded activity recognition system, IEEE
Pervasive Computing 7 (2) (2008) 32-41.

A. Rattani, R. Derakhshani, On fine-tuning convolutional neural networks
for smartphone based ocular recognition, in: 2017 IEEE International Joint
Conference on Biometrics (IJCB), IEEE, 2017, pp. 762-767.

V. Narayanan, Y. Xie, Reliability concerns in embedded system designs,
Computer 39 (1) (2006) 118-120.

E. A. Lee, What’s ahead for embedded software?, Computer 33 (9) (2000)
18-26.

E. A. Lee, Cyber physical systems: Design challenges, in: 2008 11th IEEE
International Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC), IEEE, 2008, pp. 363-369.

A. Biswas, A. P. Chandrakasan, Conv-ram: An energy-efficient sram
with embedded convolution computation for low-power cnn-based machine
learning applications, in: 2018 TEEE International Solid-State Circuits
Conference-(ISSCC), IEEE, 2018, pp. 488-490.

R. C. Baumann, Soft errors in commercial integrated circuits, International
Journal of High Speed Electronics and Systems 14 (02) (2004) 299-309.

R. C. Baumann, Radiation-induced soft errors in advanced semiconductor
technologies, IEEE Transactions on Device and materials reliability 5 (3)
(2005) 305-316.

L. Li, V. Degalahal, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, Soft
error and energy consumption interactions: A data cache perspective, in:
Proceedings of the 2004 international symposium on Low power electronics
and design, ACM, 2004, pp. 132-137.

F. Mueller, Challenges for cyber-physical systems: Security, timing anal-
ysis and soft error protection, in: High-Confidence Software Platforms
for Cyber-Physical Systems (HCSP-CPS) Workshop, Alexandria, Virginia,
2006, p. 4.

J. Maiz, S. Hareland, K. Zhang, P. Armstrong, Characterization of multi-
bit soft error events in advanced srams, in: IEEE International Electron
Devices Meeting 2003, IEEE, 2003, pp. 21-4.

J. Kim, H. Shin, Algorithm & SoC Design for Automotive Vision Systems,
Springer, 2014.

20

[16]

[18]

[19]

[20]

[21]

[24]

[25]

G. Srinivasan, P. Wijesinghe, S. S. Sarwar, A. Jaiswal, K. Roy, Significance
driven hybrid 8t-6t sram for energy-efficient synaptic storage in artificial
neural networks, in: 2016 Design, Automation & Test in Europe Conference
& Exhibition (DATE), IEEE, 2016, pp. 151-156.

D. K. Mandal, J. Sankaran, A. Gupta, K. Castille, S. Gondkar, S. Kamath,
P. Sundar, A. Phipps, An embedded vision engine (eve) for automotive
vision processing, in: 2014 IEEE International Symposium on Circuits and
Systems (ISCAS), IEEE, 2014, pp. 49-52.

I. Laguna, M. Schulz, D. F. Richards, J. Calhoun, L. Olson, Ipas: Intelli-
gent protection against silent output corruption in scientific applications,
in: 2016 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), IEEE, 2016, pp. 227-238.

G. Shi, J. Enos, M. Showerman, V. Kindratenko, On testing gpu memory
for hard and soft errors, in: Proc. Symposium on Application Accelerators
in High-Performance Computing, Vol. 107, 2009.

G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, S. W.
Keckler, Understanding error propagation in deep learning neural network
(dnn) accelerators and applications, in: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and

Analysis, ACM, 2017, p. 8.

R. A. Ashraf, R. Gioiosa, G. Kestor, R. F. DeMara, C.-Y. Cher, P. Bose,
Understanding the propagation of transient errors in hpc applications, in:
SC’15: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, IEEE, 2015, pp. 1-12.

N. Oh, P. Shirvani, E. Mccluskey, Error detection by duplicated instruc-
tions, IEEE Transactions on Reliability (2).

A. Vega, C.-C. Lin, K. Swaminathan, A. Buyuktosunoglu, S. Pankanti,
P. Bose, Resilient, uav-embedded real-time computing, in: 2015 33rd IEEE
International Conference on Computer Design (ICCD), IEEE, 2015, pp.
736-739.

K.-H. Huang, et al., Algorithm-based fault tolerance for matrix operations,
IEEE transactions on computers 100 (6) (1984) 518-528.

R. Agrawal, T. Imieliriski, A. Swami, Mining association rules between sets
of items in large databases, in: Acm sigmod record, Vol. 22, ACM, 1993,
pp. 207-216.

G. Piatetsky-Shapiro, Discovery, analysis, and presentation of strong rules,
Knowledge discovery in databases (1991) 229-238.

J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate gener-
ation, in: ACM sigmod record, Vol. 29, ACM, 2000, pp. 1-12.

21

[28]

[29]

[30]

H. M. Bui, M. Lech, E. Cheng, K. Neville, I. S. Burnett, Object recogni-
tion using deep convolutional features transformed by a recursive network
structure, IEEE Access 4 (2016) 10059-10066.

B. Recht, R. Roelofs, L. Schmidt, V. Shankar, Do cifar-10 classifiers gen-
eralize to cifar-107, arXiv preprint arXiv:1806.00451.

C. Borgelt, An implementation of the fp-growth algorithm, in: Proceedings
of the 1st international workshop on open source data mining: frequent
pattern mining implementations, ACM, 2005, pp. 1-5.

22

