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Abstract— A magnetic and inertial measurement unit
(MIMU) provides raw, real-time acceleration, angular velocity,
and a measure of earth’s magnetic field. By itself, this data is
subject to significant noise, bias, and drift (without constant
re-calibration). A data fusion algorithm can be applied to
significantly reduce these errors. In the past, many approaches
have been adopted for filtering gyroscope data with inertial
measurements, and the most commonly used techniques are
Extended Kalman filtering and complementary filters. Thus,
this paper compares three methods: two complementary filters
known as Madgwick and Mahony, and the Extended Kalman
Filter (EKF). Simulation experiments are conducted using
quadcopter data and results show that Mahony provides better
orientation estimation than both Madgwick and EKF when
using optimum parameters.

I. INTRODUCTION

With the recent rise of quadcopters and related micro-
aerial vehicles, much research has been conducted to improve
the localization accuracy of these objects. Improved accuracy
is a precursor to creating autonomous agents for a variety of
purposes and may lead to larger autonomous units such as
commercial aircraft. Localization systems typically have two
main components: onboard inertial measurement units (IMU)
and the external global positioning system (GPS). IMUs
provide short term position and orientation changes, though
without expensive calibration, which are subject to rapid
drift due to noise, bias, non-orthogonality, etc. However,
fusion algorithms exist to reduce the effects of noise and
bias on the data. GPS provides accurate long-term data but
is subject to signal blocking and the multipath problem. For
these reasons it is desirable to reduce the dependency on
GPS. Microelectromechanical (MEMS) IMUs have become
popular due to their low power consumption, light weight,
and low cost.

In our previous work we have compared Madgwick,
Mahony, and a basic DLR-AHRS filter [1]. The dataset was
a simulant of a person’s foot while walking. Since it was
simulated data, gaussian distributed error was added to the
gyroscope and accelerometer readings. No error was added
to the magnetometer since it was assumed there were no
magnetic disturbances and that its readings were reliable.
Experiments were conducted with and without the error. In
both cases, the Madgwick filter significantly outperformed
the Mahony and DLR-AHRS approach. However, there is
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concern that since the dataset was so periodic the orientation
may have been easier to predict than an object flying freely
through space.

In [2], the Madgwick filter was tested against a Kalman
Filter implementation. Three-axis MIMUs collected raw
data. A Vicon system and Nexus software provided ground
truth values. The experiment involved rotating the sensor 90
degrees around an axis, 180 degrees in the opposite direction,
and 90 degrees to bring it back to the origin. This was
repeated multiple times around each axis and the sensor was
held stationary for 3 to 5 seconds between each rotation.
This experiment achieved better results than a Kalman filter.
However, the data set is too simplistic; it was meant only
to validate the filter’s method and is not representative of an
object in motion. Without positional offset, the gravity vector
is much easier to estimate accurately. Most applications of
IMUs do not have such slow and smooth motion.

Cirillo et al. [3] has investigated the accuracy of an
Extended Kalman Filter (EKF), Madgwick, and Mahony
using a KUKA Youbot on an omnidirectional platform. Data
was collected in two phases. The first phase consisted of
rotating the three axes individually. In the second, joints were
coordinated to rotate around multiple axes simultaneously.
All three algorithms were implemented in Simulink. The
authors conclude that the filters perform similarly, though
the EKF has a higher computational load. They note that the
extra computation is due to its generality, allowing additional
sensory information to be added without redesigning or
retuning parameters.

This paper uses flight data of a quadcopter and compares
the Extended Kalman Filter (EFK) with Madgwick and
Mahony to estimate an object’s orientation. Each approach
is evaluated and compared using RMSE (Root Mean Square
Error) and the absolute error of the Euler estimates. Further-
more, the running time of all approaches are evaluated.

II. BACKGROUND TO MAGNETIC AND INERTIAL
MEASUREMENT UNIT (MIMU)

This section describes magnetic and inertial measurement
units and the method used to estimate attitude. Sources of
error are briefly discussed, and the mathematical notation
used in the rest of the paper is defined.

A. MIMU Sensor

MIMUs are a version of an inertial measurement unit
(IMU) with a 3-axis magnetometer included. These are



sometimes also referred to as an IMU, but for clarification the
acronym has been extended. Data was collected using MEMS
(microelectromechanical system) sensors. MEMS sensors are
inexpensive and consequently suffer from many sources of
error, including high levels of noise, bias, axis misalignment,
scale factor, and local temperature [4].

Due to these errors, any of the sensors alone are not
enough to accurately estimate attitude. Thus, their data is
combined to produce a superior estimate of the MIMUs
attitude. By combining readings from all three sensors,
the cumulative effects of their errors can be significantly
reduced.

1) Gyroscope: Gyroscopes directly measure rate of rota-
tion, typically in % Integrating these values give an attitude
estimation, however, without repetitive calibration this esti-
mation can become so poor as to become unusable. For this
paper, the velocity is represented as: [s,, 5w, ER

The continuous time model for a gyroscope can be ex-
pressed as:

Sw = Sw, + Swy + Sw,, (1)

where s,, is the angular rate measured by the gyroscope, s,
is the true angular rate, s,,, is the gyroscope bias that models
its derivative by a random walk noise, and s,,,, is the white
noise of the gyroscope.

2) Accelerometer: Accelerometers measure the sum of
gravity and acceleration of the MIMU in 3. Only the gravity
vector is useful for attitude estimation, and thus another
estimate must be made to separate the gravity and accelera-
tion vectors. This step is done within the filter. The gravity
estimate is used to improve pitch and roll angle estimates.
Acceleration is represented as s, = [Sa, Sa, Sa.) -
The continuous time model of the accelerometer can be
summarized as:

Sa = Sa, + Say + Sa, (2)

where s, is the sum of the gravity and external acceleration
of the tracking object, s, is the sum of the gravity and
external acceleration, s,, is the accelerometer bias that
models its derivative by a Gauss-Markov noise, s,, is the
accelerometer white noise.

3) Magnetometer: Magnetometers measure the magnetic
field around the MIMU in pT'. Of the three sensors, magne-
tometers suffer the least amount from inherent noise. With
accurate readings, the yaw angle can be easily estimated.
However, magnetometers are greatly influenced by local
magnetic fields. Please refer to [5] for more information. Its
readings are represented as s, = [Sm, Sm, $m.]T. The
continuous time model of the magnetometer is represented
as:

Sm = Sm,. + Smy + Sm, 3)

where s, is the magnetic field measured by the magnetome-
ter, S,,, is the true magnetic field, s,,, is the bias of the
magnetometer where its derivative is modeled by a Gauss-
Markov noise, and s,,,, is the white noise.

B. Attitude Representation

Calculations of a MIMU’s orientation are typically done
with unit quaternions. These link the local frame of the
MIMU with with Earth’s frame. Accuracy depends entirely
on how well these frames are aligned. Other representations
include Euler angles and 3x3 direction cosine matrices
(DCM) [6]. Euler angles are useful when viewing data
but are ambiguous and suffer from the gimbal lock during
calculations [7]. DCMs are stable but are slower to calculate
as nine values need to be computed each update compared
to four for quaternions. Thus, quaternions are the popular
choice. They are defined as [8]:

q=9Sg, = {%0} =l o ¢ @"eR" @
where ¢y and 7 are the scalar and the vector portions of the
quaternion, respectively.

Since quaternions are less intuitive to interpret, this paper
converts final values into Euler angles. These are comprised
of three rotations [7]:

¢ a rotation ¢ around the x-axis (roll angle)
« a rotation 6 around the y-axis (pitch angle)
 a rotation v around the z-axis (yaw angle)

III. ATTITUDE ESTIMATION ALGORITHMS

The overall design of attitude estimation filters including
the Mahony filter [9], Madgwick Filter [10], and EKF [11]
descriptions are provided in the following subsections.

A. Filter Design

The Mahony and Madgwick algorithms are described
using common notations used for quaternion and their sensor
readings. The estimated vector v is described by © =
[b, ©, ©,]7, the quaternion and angular rate errors are
given by q., w,, and the time difference between two epochs
is At.

In order to estimate g, the two filter algorithms use two
reference vectors F, and F,, for acceleration and magnetic
field, respectively. For the static case, £, = [0 0 g¢]7
where g is the acceleration due to gravity (g ~ 9.877). If
there are no magnetic deviations, then F,, can be calculated
as described in [12]. In a noise-free environment, the relation
can be described as:

Sa, — q_l ® an ® q (5)

q

where ® is the quaternion multiplication [8]. s,, is the
quaternion form of s,, which can be described by S,, =
0 54, Sa, sa.]T. E,, is the quaternion form of E,.

In a perfect, noise-free, no-magnetic-deviation environ-
ment, the relation between F,, and s, is as follows:

Smy =0 ' ®Ep, ®q (6)
where s, is the quaternion form of s,,, which can be given
as Sm, = [0 Sm, Sm, Sm.]7. Enp, is the quaternion
form of F,,.



The kinematic equation of a rigid body is given by angular
velocity measurements from a gyroscope in order to describe
the variations of the attitude in terms of quaternions such as:

1
Q=30 su, )

where s,,, is the quaternion of s,.

B. Mahony Filter

Algorithm 1 displays the equations used for the Mahony
filter. Please note that k; and k, are the integral and
proportional adjustable gains (see Equation 1), respectively.
The algorithm computes the error by cross multiplying the
measured and the estimated vectors, and the acceleration and
magnetic field. This then allows to correct the gyroscope
bias.

Algorithm 1 Mahony Filter [9]

Sage = Q;—l% ® FEo,, @ Gr—1
Sig, =41 @ qu,,, & Gr—1

Swnles,t = [Sat X S‘it] + [Sm‘t x Sm"]
S = _kiswmes,t
-0 Su*;b’t] +10 kpswmes,t]

C. Madgwick Filter

The Madgwick filter algorithmic description is given in
Algorithm 2. Madgwick is a gradient descent based algo-
rithm. In this algorithm, the quaternion error calculation from
the gradient descent algorithm provides also a gyroscope drift
compensation. J; describes the Jacobian Matrix of F}, [ is
the divergence rate of ¢; representing the magnitude of a
quaternion derivative according to the gyroscope measure-
ment error, and ( is the integral gain.

Algorithm 2 Madgwick Filter [10]
By = Gt—1® Sm,, @ a

Ep,,=[0 0 /B2 +Eje Ej ]"

A1 ~
Ft _ |:Qt_1 X an,t & qt—1 — Saq,t :|

G ® Em,, ®4—1— Sm,,

qu,t = JtTFt

Sies = 2Gt—1 @ Get

Suilb,t = Swevt

Sy = Swy — Cswb,t

A Qe,t

— 1z
Ge = 20—1® S0, ~ Brigcy

D. Extended Kalman Filter (EKF)

The Extended Kalman filter is a closed loop system
consisting of the following four steps:

1) Prediction

2) Kalman gain

3) Update

4) Quaternion normalization
The MIMU sensor input is provided during the update step,
and after each of the four steps are executed, the output is
provided in the form of an estimated orientation.

The Extended Kalman filter is used to model nonlinear
systems, which deal with cases that are governed by nonlin-
ear stochastic differential equations such as:

% = f(x,t) + u(t) (8)

z =h(x,t) +v(t) )

where u(t) and v(t) are white noise sequences with zero
means, which are mutually independent:

Elu(t)v'(r)] =0
(10)
where d(t) is the Dirac delta function, E[] is the expectation,
and superscript 1" represents the matrix transpose.
In the discrete-time equivalent form, Equations (8) and (9)
are given as:

(1)

X1 = f(xk, k) + Wi

Zi = h(X}C, k) + vi (12)

where x5, € R" is the state vector, wi, € R™ is the process
noise vector, z; € R™ measurement vector, and vy € R™
measurement noise vector. In Equations (11) and (12), wy
and vj are zero mean Gaussian white noise sequences that
are having zero cross-correlation with each other such as:

Elw,w]] = Qudix (13)
E[VkViT] = Rkéqk (14)
E[w,vl]=0 for all i and k (15)

where Q) is the process noise covariance matrix, and Ry
is the measurement noise covariance matrix. The Kronecker
delta function d;;, is described by:
1=k

L,
6m:{0,i¢k

The Extended Kalman Filter algorithmic description is
given in Algorithm 3. Equations (17) - (19) are measurement
update equations, whereas Equations (20) - (22) are time
update equations from step k to k + 1. In order to calculate

(16)



an improved posteriori estimation, the equations transform
the measurement value into a priori estimation. Py is the
error covariance matrix defined by E[(x; — %) (xx — %) 7],
for which X; is an estimate of the system state vector
x, and Kj is the Kalman gain matrix. The algorithm
starts with initial condition values X, and P, and once a
new measurement z; becomes available, the estimation of
states and the corresponding error covariance are calculated
recursively. More details on the Extended Kalman Filter are
given in [13], [14], [15].

Algorithm 3 Extended Kalman Filter Algorithm
1. Initialization of the state vector and state covariance
matrix:

Xy and Pg
2. Computation of the Kalman gain matrix:
K, = Py HY [H P H + Ry ™! (17)

3. The state correction vector and update state vector are
calculated as follows:

Xy =%, +Kplzp — 2, ], with 2, =h(x_,k) (18)
4. Update of error covariance:
P, = [I — Kka]P; (19)

5. Prediction of new state vector and state covariance matrix:

% = (X, k) (20)

Py = ®Pr®] + Qi 2L

where the linear approximation equations for the system and
measurement matrices are obtained as follows:

- 3fk ~ 6hk

Ox Ix=x;’ 0x Ix=x

®, H, (22)

k

IV. EXPERIMENTS AND RESULTS

This section describes the parameter setup of the estima-
tion algorithm first followed by the description of the data
set used and the evaluation measures applied. The fourth
subsection lists the experimental simulation results in figures
and tables.

A. Parameter Setup for Algorithms

Optimum parameter values for Madgwick and Mahony
were obtained using a genetic algorithm since these are
extremely sensitive and even minor changes can give drasti-
cally different results. More details on the use of a genetic
algorithm for parameter optimization can be found in [16].
Thus, the following values have been identified:

o Madgwick: = 0.011765
e Mahony: k, = 0.0039216 and k; = 0.001

The initial parameters in the Extended Kalman Filter were
not optimally estimated since they quickly converge to the
best value. All algorithms are implemented in MATLAB.

B. Data Set

The data set was obtained from [17]. The sensor data
represents the motion of a quadcopter as it travels in a
rectangular path. To remain consistent with previous work,
angular velocities are bounded from 180 to 180 degrees.
To deal with issues of signs changing along the boundaries,
absolute values are taken for all error calculations. Ground
truth Euler angles were collected using a Vicon system.
In particular, the datasets were recorded using an AscTec
‘Pelican’ quadrotor (see Figure 1), flying in an indoor
environment of size 10m x 10m x 10m.

Figure 2 shows the trajectory traveled by the quadrotor,
tracked by the motion capture system, during the ‘lloop’
experiment (2D top view (left) and 3D side view (right) of the
trajectory traveled by the quadrotor during the ‘1LoopDown’
experiment). The data sets include acceleration and angular
velocity readings from the IMU.

Fig. 1.

Quadrotor frames [18]

C. Evaluation Measures

Euler angles are typically used to represent orientation
with roll, pitch, and yaw. However, they can be subject to am-
biguity and gimbal lock. To remove those issues, Madgwick
and Mahony use quaternions to represent orientation in three-
dimensions. These are converted back into Euler angles for
error calculations. The Root Mean Square Error (RMSE) and
the mean absolute error are used as a measure of accuracy.
We evaluate the accuracy of Madgwick, Mahony, and the
Extended Kalman Filter. Furthermore, the execution time of
each is evaluated.

D. Results of Simulation Experiments

Figures 3-5 and Table I shows the results of the Euler
estimation for all three filters. As can be seen by the table
and the figures, the three filters achieve similar results. It



Fig. 2.

is important to note that the large jumps from 180 degrees
to 180 degrees did not affect the error calculations. Of the
three algorithms, Mahony achieved the smallest RMSE with
a norm of 11.0107 degrees. The Extended Kalman Filter
performed the worst in this regard. However, it is useful to
note that the mean absolute error at each sample gives a
different ordering.
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Fig. 3. Euler Estimates of Madgwick

TABLE I
RMSE OF EULER ESTIMATES

X Y Z Norm

Madgwick  3.4677 3.3482  12.0775  13.0039

Mahony  4.1204 4.7005 9.06644  11.0107

EKF 1.4088 12055 13.1648 13.2948
TABLE 11

MEAN ABSOLUTE ERROR OF EULER ESTIMATES

X Y V4 Sum

Madgwick  1.2272  1.8787 3.6674  6.7733
Mahony 1.0723  1.0605 4.2376  6.3704
EKF 0.2220 0.2397 53192 5.7809

While all three filters appear to give comparable results
using both error measures (Table I and IT), Madgwick and

Quadrotor during “lloop’

>

experiment [19]
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Fig. 4. Euler Estimates of Mahony

Mahony require sensitive parameters that appear to be unique
to each data set or type of motion. Initial parameters in the
Kalman filter are less important since they quickly change
to dynamically reduce gain.

In all three filters, the yaw estimate was significantly
more inaccurate than the other axes. Since this is largely
determined by the magnetometer data, we conclude that
there were magnetic disturbances in the data collection
room causing the sensor to detect more information than
solely the earth’s magnetic field. In an ideal setup, the
norm measurement of earth’s magnetic field should remain
constant. However, there were significant fluctuations in this
value indicating magnetic disturbances.

Finally, the execution time needed to update each filter
through all the samples is compared. There are 6,401 sam-
ples in our data set.

TABLE III
RUNTIME IN SECONDS FOR 3 ESTIMATION ALGORITHMS

Execution time (seconds)

Madgwick 0.2080
Mahony 0.1782
EKF 0.2895

As can be seen in Table III, Mahony achieved the fastest
execution time (0.1782 seconds) with the EKF performing
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the slowest (0.2895 seconds). This is expected since the
EKF is more general and easily able to accommodate more
information, such as barometric pressure sensors or GPS.

V. CONCLUSION

The recent rise of quadcopters and related micro-aerial
vehicles has led to more research being conducted to improve
the localization accuracy of these objects. Improved accuracy
is a necessity for creating autonomous agents for different
purposes, and this may lead to larger autonomous units such
as commercial aircrafts.

A magnetic and inertial measurement unit (MIMU) pro-
vides raw, real-time acceleration, angular velocity, and a
measure of earth’s magnetic field. By itself, this data is
subject to significant noise, bias, and drift. However, fusing
acceleration, angular velocity, and magnetometer readings
provides a far more accurate orientation estimation. This
paper compares the accuracy of the Madgwick, Mahony, and
Extended Kalman Filter in estimating orientation of a moving
object. Data was collected by a quadcopter with ground truth
obtained using a Vicon system. Euler angle estimations were
compared to the ground truth and the error was measured
using Root-Mean-Square Error and the mean absolute error.
In addition, the execution time of each was evaluated.

The three filters achieved relatively similar results using
both error measurements with Mahony outperforming Madg-
wick and EKF. In terms of execution time, Mahony had the
fastest execution time with the EKF performing the slowest.
This is expected, however, due to a higher computational
load.

ACKNOWLEDGMENT

This work is funded by North Dakota Department of
Commerce under project number FAR0027254.

REFERENCES

[1] S. A. Ludwig, K. D. Burnham, A. R. Jimnez, P. A. Touma, Comparison
of attitude and heading reference systems using foot mounted MIMU
sensor data: basic, Madgwick, and Mahony, SPIE Conference on
Sensors and Smart Structures Technologies for Civil, Mechanical, and
Aerospace Systems, Denver, CO, USA, March 2018.

[2] R. Mahony, Tarek Hamel, Jean-Michel Pflimlin. Nonlinear Comple-
mentary Filters on the Special Orthogonal Group. IEEE Transactions
on Automatic Control, Institute of Electrical and Electronics Engineers,
53 (5), pp- 1203-1217, 2008.

[3] A. Cirillo, P. Cirillo, G. De Maria, C. Natale, and S. Pirozzi. A
comparison of multisensor attitude estimation algorithms. Multisensor
Attitude Estimation: Fundamental Concepts and Applications, Chapter:
29, Publisher: CRC Press, Editors: H. Fourati, D. E. C. Belkhiat, pp.
529-539, 2016.

[4] T. Michel, H. Fourati, P. Geneves, N. Layada. A Comparative Analysis
of Attitude Estimation for Pedestrian Navigation with Smartphones.
2015 International Conference on Indoor Positioning and Indoor Nav-
igation, Banff, Canada, October 2015.

[5] W. M. Chung, S. Yeung, W. W. Chan, R. Lee, Validity of VICON
Motion Analysis System for Upper Limb Kinematic Measurement A
Comparison Study with Inertial Tracking Xsens System. Hong Kong
Physiother. J. 2011.

[6] D. Sachs, Sensor fusion on android devices: A revolution in mo-
tion processing, [Video] https://www.youtube.com/watch?
v=C7JQ7Rpwn2k, 2010, [Online; last accessed December 2017].

[7] J. Diebel, Representing attitude: Euler angles, unit quaternions, and
rotation vectors, Matrix, vol. 58, pp. 15-16, 2006.

[8] B. Kuipers, Quaternions and rotation sequences, vol. 66, 1999.

[9] R. Mahony, T. Hamel, and J.-M. Pflimlin, Nonlinear complementary
filters on the special orthogonal group, Automatic Control, IEEE
Transactions on, vol. 53, no. 5, pp. 1203-1218, 2008.

[10] S. O. Madgwick, A. J. Harrison, and R. Vaidyanathan, Estimation of
IMU and MARG orientation using a gradient descent algorithm, in 2011
IEEE International Conference on Rehabilitation Robotics (ICORR),
2011.

[11] J. L. Marins, X. Yun, E. R. Bachmann, R. B. McGhee, and M. J. Zyda.
Extended kalman filter for quaternion-based orientation estimation
using marg sensors. In Proc. of the 2001 IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, pages 2003-2011, 2001.

[12] NGA and the U.K.’s Defence Geographic Centre (DGC), The world
magnetic model, http://www.ngdc.noaa.gov/geomag/WMM,
2015, [Online; last accessed December 2017].

[13] R. Brown, P. Hwang, P. Introduction to Random Signals and Applied
Kalman Filtering, Wiley, New York, NY, 1997.

[14] J. A. Farrell, M. Barth, The Global Positioning System & Inertial
Navigation, McGraw-Hill, New York, NY, 1999.

[15] A. Gelb, Applied Optimal Estimation, MIT Press, Cambridge, MA,
1974.

[16] S. A. Ludwig, A. R. Jimnez, Optimization of Gyroscope and Ac-
celerometer/Magnetometer Portion of Basic Attitude and Heading Ref-
erence System, Proceedings of 2018 IEEE International Symposium on
Inertial Sensors and Systems (INERTIAL), Lake Como, Italy, March
2018.

[17] G. H. Lee, M. Achtelik, F. Fraundorfer, M. Pollefeys, and R.
Siegwart, A Benchmarking Tool for MAV Visual Pose Estimation,
International Conference on Control, Automation, Robotics and Vision
(ICARCV’10), Singapore, December, 2010.

[18] MAV DataSet, https://sites.google.com/site/
gimheelee/home/mavdataset, last retrieved February 2018.
[19] R. G. Valenti, I. Dryanovski, J. Xiao, Keeping a Good Attitude: A

Quaternion-Based Orientation Filter for IMUs and MARGs, Sensors

2015, 15(8), 19302-19330, 2015.



