
Hyperparameter Optimization: Comparing Genetic
Algorithm against Grid Search and Bayesian

Optimization
Hussain Alibrahim

Department of Computer Science
North Dakota State University

Fargo, USA
hussain.alibrahim@ndsu.edu

Simone A. Ludwig
Department of Computer Science

North Dakota State University
Fargo, USA

simone.ludwig@ndsu.edu

Abstract—The performance of machine learning algorithms
are affected by several factors, some of these factors are related
to data quantity, quality, or its features. Another element is the
choice of an appropriate algorithm to solve the problem and
one major influence is the parameter configuration based on the
problem specification. Parameters in machine learning can be
classified in two types: (1) model parameters that are internal,
configurable, and its value can be estimated from data such as
weights of a deep neural network; and (2) hyperparameters,
which are external and its values can not be estimated from data
such as the learning rate for the training of a neural network.
Hyperparameter values may be specified by a practitioner or
using a heuristic, or parameter values obtained from other
problems can be used etc., however, the best values of these
parameters are identified when the algorithm has the highest
accuracy, and these could be achieved by tuning the parameters.
The main goal of this paper is to conduct a comparison study
between different algorithms that are used in the optimization
process in order to find the best hyperparameter values for
the neural network. The algorithms applied are grid search
algorithm, bayesian algorithm, and genetic algorithm. Different
evaluation measures are used to conduct this comparison such
as accuracy and running time.

Index Terms—Hyperparmeter optimization, Grid Search,
Bayesian, Genetic Algorithm

I. INTRODUCTION

Classification is one of the important techniques in data
mining; one reason is since classification aids humans in the
understanding of the labels being classified. This results in a
great deal of interest in classification from the academic com-
munity from statistics to machine learning to data mining and
so on. Different domains have applied classification, including
bioinformatics [1] image processing, [2], text classification [3],
[4], and language processing [5].

A machine learning model has two types of parameters [6]:
• Model Parameters: consist of configurable variables

used inside the model; their values can be estimated
or learned from the data but are usually not manually
provided and are incorporated as a part of the learning

process. Some examples of model parameters include
weights in an artificial neural network, support vectors
in support vector machines, and coefficients in linear
regression or logistic regression.

• Hyperparameters: are external parameters that are not
part of the model and thus can not be predicted from the
data set but can be configured by subject matter experts or
by trial and error until an acceptable accuracy is achieved.
Neural networks have many of these parameters such as
the learning rate, optimizer, number of hidden layers, and
size of each layer, etc.

For classification problems, to achieve a high degree of
accuracy, a user has to successfully manage the hyperpa-
rameter configuration process, which is different for different
algorithms and data sets. This process can be performed by
using default values for the algorithm, manually setting them
using previous examples or experiments, or asking experts to
help in defining these parameters [6].

An alternative solution [7] involves the use of
hyperparameter-tuning strategies that are data dependent,
which try to minimize the expected generalization error of the
algorithm over a hyperparameter search space of considered
candidate configurations, usually by evaluating predictions on
an independent test set or running a resampling scheme such
as cross-validation. These search strategies range from easy,
such as random search or grid search, to more complex ones
like bayesian optimization or iterated forcing.

The choice of tuning strategy represents only one step in
the hyperparameter optimization process; the user also has
to define the hyperparameter lists and search range for each
parameter, as well as to identify that parameter that may use
default values. Both are important steps in the optimization
process and any mistake in defining the parameters and setting
the values may lead to wasting of computational time and
resources or an unsuccessful optimization process.

II. RELATED WORK

In [8], the authors highlight the importance of the concept
of early termination, which is a good way to optimize hy-978-1-7281-8393-0/21/$31.00 ©2021 IEEE

perparameters since the normal optimization process requires
large computational power and time due to the number of
hyperparameters necessary, each of which could assume a
range of values or even multiple values. The core idea behind
the proposed approach instead involves training each model
for only a short time and then extracting the information
available to predict the final score of the model. The model
was tested through experiments with a bank marketing data
set that contained 45,211 records and 17 attributes. The results
were compared to the random search and the Predictive Hy-
perparameter Optimization (PHO) algorithm (their proposed
model). All results showed that PHO performed better than
the random search.

In [9], the grid search and manual search were compared;
these are most often used algorithms in hyperparameter op-
timization. The finding of the paper was that random search
achieves better results than grid search for the hyperparameter
tuning process, both empirically and theoretically. Empirical
evidence stems from a comparison with a previous large study
that used grid search, and manual search to configure neural
networks and deep belief networks. Compared with neural
networks configured by a pure grid search, the result was that
the random search over the same domain was able to find
models that were as good or better within a small fraction for
the same computation time. Granting random search the same
computational budget, the random search finds better models
by effectively searching a larger configuration space.

In [10], random search, gaussian process approach (GP),
and the tree-structured parzen estimator approach (TPE) were
used in a hyperparameters optimization comparison study.
Random search has been shown to be sufficient and efficient
for learning neural networks on several data sets, but have been
unreliable for training Deep Belief Networks (DBN). This test
used a convex data set and Market Research Bureau of Ireland
(MRBI) data set. TPE performed the best with test errors of
14.13% and 44.55%, respectively, while the random search
resulted in test errors of 18.97% and 50.52%.

This paper investigates the performance of three algorithms
for hyperparameter optimization, grid search, bayesian and
genetic algorithm. These were chosen since these three ap-
proaches have not been compared with each other as of now. In
particular, we are interested to see how the genetic algorithm
optimization of the hyperparameters fares against the two other
algorithms.

III. OPTIMIZATION APPROACHES

This section introduces and describes the algorithms used in
this study on hyperparameter optimization namely grid search,
bayesian, and genetic algorithm.

A. Grid Search Algorithm

Grid search [8] is a systematic way to search over the
search space for hyperparameters, and it will create all possible
combinations regardless of the effects of the elements in the
optimization process. All parameters have the same probability
of impacting that process. While this method provides certain

guarantees, it also has some major drawbacks. For instance,
for an optimization with a large number of parameters and
each parameter consisting of several values, this leads to a
large number of combinations, that will result in an extensive
amount of computations and time spent.

B. Bayesian Algorithm

The bayesian algorithm [11] is more dynamic than the
grid search; it consists of two key components, which are
the probabilistic surrogate model and the acquisition function.
Bayesian is an interactive algorithm, in each iteration the
surrogate model is fitted to all observations of the target
function made so far. Then, the acquisition function searches
for most parameters that improve the search and focuses on
them to find the best set of hyperparameters. The Bayesian-
based model attempts to predict how untested combinations
will perform. Although many acquisition functions exist, the
expected improvement is a common choice since it can be
computed in closed form if the model prediction and config-
uration set follows a normal distribution.

C. Genetic Algorithm

Genetic algorithms [10] are metaheuristic optimization al-
gorithms that resemble natural evolution. By relying on the
evolutionary theory of the survival of the fittest as well as
the ideas of selection and mutation, genetic algorithms aim to
simulate the evolution of solutions over different generations
so as to eventually identify an optimal or near-optimal solution
for an optimization problem.

The algorithm evaluates the fitness of each solution set of
parameters and selects the best individuals according to a
fitness function, or a function defining the suitability of the
solution to the problem. A set of genetic operators, such as
crossover or mutation, is used to evolve from the best individu-
als until a new population is generated. The new population, in
turn, evolves and is evaluated with the same mechanism until
the termination condition is reached. In this way, the fittest or
best individuals in the population are therefore identified and
returned as the solution to the optimization problem.

IV. DATA SET AND EVALUATION METRIC

The Keras sequential class [12] was used to build the neural
networks that can be used for binary classification over a data
set. The aim of the experiment was to find the best combination
of parameters that give best performance given the appropriate
measure. The input layer dimension is fixed to 200, which is
the same as the number of features, and the activation function
is set to “relu”, while the output layer size was one with the
“sigmoid” activation function. All other hyperparameters were
passed during the training phase.

A. Data Set

This paper used the Santander Customer Transaction Predic-
tion data set [13] to compare the three hyperparameter based
algorithms. The data set has 200,000 records with 200 numeric
features to predict whether the customer will make a specific
transaction or not, regardless of the amount.

B. Evaluation Metric

In order to conduct a good comparison among the different
algorithms for the hyperparameters optimization process, the
following criteria have been chosen to be included in the
evaluation; more explanation can be found in [14]:

1) Accuracy: The accuracy of a classifier is one metric
for assessing classification models. Accuracy is the ratio
of estimating the correct class compared to the overall
number of classifications as defined:

Accuracy =
Number of correct predictions

Total number of predictions
(1)

For binary classification, accuracy can also be calculated
in terms of positives and negatives as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

where TP = True Positives, TN = True Negatives,
FP = False Positives, and FN = False Negatives.
Accuracy gives an estimate of the probability of a correct
prediction; thus, the higher the accuracy, the better the
model performance.

2) Loss Value: Opposite to accuracy, the loss value shows
how bad the predication process is. This value is calcu-
lated based on a loss function, which is detailed in the
following section on Hyperparameters search space. In
general, it shows the difference between the predicted
value of a model and the true value.

3) Mean Squared Error (MSE): MSE is the mean of
the squared prediction errors over all instances. The
prediction error is the difference between the true yi
and the predicted value λ(xi) for an instance n. MSE
is calculated as:

mse =

∑n
i=1(yi − λ(xi))2

n
(3)

4) Mean Squared Log Error (MSLE): MSLE is a vari-
ation of the Mean Squared Error, where the focus lies
in the percentual difference between the true y and the
predicted ŷ value. MSLE is calculated as:

L(y, ŷ) =
1

N

N∑
i=0

(log(y + 1)− log(ŷ + 1))2 (4)

5) Area Under the Curve (AUC) [15]: AUC is an experi-
mental computation of the classification process perfor-
mance based on the area under an Receiver Operating
Characteristics (ROC) curve. ROC is a probability curve
that is plotted with the true positive rate against the false
positive rate. AUC assess the performance of a scoring
classifier on a test set, but ignores the magnitude of the
scores and only takes their rank order into account. The
AUC value ranges between 0 to 1, where 0 means that
all negatives are ranked before all positives, and 1 means
that all positives are ranked before all negatives.

6) Confusion matrix: The confusion matrix summarizes
the classification performance of a classifier with respect
to test data. It is a two-dimensional matrix for binary
classification, indexed in one dimension by the true
class of an object and in the other by the class that
the classifier assigns. Table I shows an example of
this matrix. This matrix is used to evaluate the model
prediction process.

TABLE I: Confusion Matrix

True Class
Predicted Class Positive (c1) Negative (c2)
Positive (c1) True Positive (TP) False Positive (FP)
Negative (c2) False Negative (FN) True Negative (TN)

7) Wall time: The wall time measures the total time
to execute a program in a computer or basically the
program running time only, which is different from
the CPU or execution time that measures the time the
CPU spends on running the program, which includes
preparation and closing time for the CPU to run the job.

C. Search Space

Search space has been defined to cover different combi-
nations of neural network hyperparameters. The search space
covered are hidden layer number, hidden layer size, optimizers,
loss functions, activation, dropout and validation split. The
value range is different for each parameter, and in total there
are 28,800 combinations. The details of each hyperparameter
and its value are:

1) Hidden layer number and size: The major parameters
in a neural network are the number of layers. As stated
earlier, the input layer and output layer size was fixed
to 200 and one layer, respectively. The input size is
the number of features of the data set, and the output
layer size is one since the network will decide whether
the customer will make a specific transaction (1) or
not (0). Hidden layers are the layers in the middle
between the input and output layer. These layers perform
nonlinear transformations of the input provided to the
network. Based on the problem to be solved, these are
the different layer numbers and sizes used in this paper:

a) 1 hidden layer with 100 neurons;
b) 1 hidden layer with 150 neurons;
c) 2 hidden layers with 150 neurons and 75 neurons;
d) 3 hidden layers with 150, 100, 50 neurons.

2) Optimizers: In this experiment, different optimizers
are widely used by the deep learning community. The
following optimizers are listed below; more details are
available in [16].

• Stochastic Gradient Descent (SGD): Gradient de-
scent is a way to minimize an objective function J(θ)
parameterized by a model’s parameters θ ∈ Rd by
updating the parameters in the opposite direction of
the gradient of the objective function ∇θJ(θ) w.r.t.
to the parameters. The learning rate η determines the

size of the steps we take to reach a (local) minimum.
Stochastic Gradient Descent (SGD) is an iterative
algorithm that starts with random values and moves
downside the slope in each iteration until it finds
the lowest point of the function. SGD updates the
parameter θ for each single training sample x(i) and
labeled y(i):

θ = θ − η.∇θJ(θ;x(i); y(i)) (5)

Because of the multiple updates after each iteration,
SGD is a fast algorithm compared to other gradient
descent algorithms such as batch gradient descent,
which perform the parameter update only after the
training is completed for the whole training data set,
and at the same time it has high variance that causes
the objective function to fluctuate heavily.

• Root Mean Square Propagation (RMSprop): This
is a gradient based optimization technique used for
training neural networks. It was proposed by Geof-
frey Hinton. Gradients of very complex problems
have an inclination to either vanish or explode.
Rmsprop was developed as a stochastic technique
for mini-batch learning. It deals with this issue by
using a moving average of squared gradients to
normalize the gradient. This normalization balances
the step size, decreasing the step for large gradients
to avoid exploding, and increasing the step for small
gradients to avoid vanishing. Rmsprop updates pa-
rameter θt at time t as:

θ(t+1) = θt −
η√

E[g2] + ε
g(t) (6)

where η represents the learning rate, E[g2] is the
running average for the squared gradients, and ε is
the smoothing term used to avoid the divide-by-zero
error.

• Adaptive Gradient (Adagrad): This is a gradient-
based optimizer that adapts the learning rate to the
parameters. It performs the adaption based on the
frequency of the parameter occurring features. It
will assign a small learning rate value for parameters
associated with regularly occurring features, and a
larger value for parameters associated with rarely
occurring features. The main advantage of this op-
timizer is that there is no manual update of the
learning rate. The update action can be represented
as:

θ(t+1) = θt −
η√

Gt + ε
� g(t) (7)

where Gt is the diagonal matrix that contains the
sum of gradients for all parameters up to time t,
and g(t) represents the gradient at this time.

• Adaptive Moment Estimation (Adam): This algo-
rithm is an extension of stochastic gradient descent,

and combines the advantages of the RMSprop and
Adagrad algorithms described earlier. Adam, instead
of adapting the parameter learning rates based on the
average past squared gradients only υt, it also makes
use of the average of the exponentially decaying
average of past gradients mt. Adam’s update rule is
the following:

θ(t+ 1) = θ − η√
υ̂t + ε

m̂t (8)

• Adamax: It is a variant of the Adam optimization
algorithm, but instead of using two norms to adapt
the parameter learning rate, Adamax generalizes this
limitation to ∞. The update rule for Adamax is:

θ(t+ 1) = θ − η

ut
m̂t (9)

while ut is the max value:

ut = max(β2.ut−1, |gt|) (10)

with initial value u0 = 0. Note that, conveniently
enough, Adamax does not need to correct for ini-
tialization bias. Also note that the magnitude of pa-
rameter updates has a simpler bound with AdaMax
than Adam, namely: |4t| ≤ α.

• Nesterov-accelerated Adaptive Moment Estima-
tion (Nadam): As Adam can be viewed as a com-
bination of RMSprop and Adagrad, Nadam can be
seen as a combination of Adam and Nesterov accel-
erated gradient (NAG). NAG is a way to calculate
the next position of parameter t + 1 in addition to
the current position t so then NAG can decide to
stop or the move ahead to the next position. After
incorporation of NAG into Adam, this is the update
rule:

θt + 1 = θ − η√
υ̂t + ε

(β2m̂t +
(1− β1)gt
1− βt1

(11)

where β represents the decay rate.
3) Loss Function: The loss function is the method that

evaluates how well an algorithm models a data set. If
the predictions are mostly wrong then the loss function
will return a large number, which means the model has
to be improved. On the other hand, if the return value
was small then this means the model is predicting very
well. There are many different functions and for this
experiment the following loss functions were used:

• Mean Squared Error (MSE): as previously stated
it is the mean of the squared prediction errors
over all set instances. The prediction error is the
difference between the true (yi) and the predicted
value λ(xi) for an instance (n):

mse =

∑n
i=1(yi − λ(xi))2

n
(12)

• Mean Absolute Error (MAE): is the mean of the
absolute values of the individual prediction errors

over all instances in the test set. Each prediction
error is the difference between the true value (yi)
and the predicted value lambda(xi) for instance n.

mea =

∑n
i=1 abs(yi − λ(xi))

n
(13)

• Mean Absolute Percentage Error (MAPE): as
given in [17], MAPE is the most common measure
used to predict errors, and works perfectly if there
are no extreme values in the data. MAPE is a
statistical measure of how accurate a prediction
model is. It measures the accuracy as a percentage
between the true value yi and the predicted value
lambda(xi) for the instance n:

mape =

∑n
i=1 |

yi−λ(xi)
yi

|
n

(14)

• Mean Squared Logarithmic: is a variation of the
Mean Squared Error, where the focus lies on the
percentual difference between the true y and the
predicted ŷ value:

L(y, ŷ) =
1

N

N∑
i=0

(log(y + 1)− log(ŷ + 1))2 (15)

• Squared Hinge [18]: This loss function is used for
“maximum margin” binary classification problems.
The hinge loss guarantees that during training the
classifier will find the classification boundary, which
is the furthest apart from each of the different
classes of data points. In other words, it finds the
classification boundary that guarantees the maxi-
mum margin between the data points of the different
classes. Mathematically it is defined as:

L(y, ŷ) =

n∑
i=0

(max(0, 1− yi.ŷi)2) (16)

• Log Cosh: As per tensor flow documentation, Log-
cosh is the logarithm of the hyperbolic cosine of
the prediction error, and is another function used in
regression tasks, which is smoother than the mean
square error. Log-cosh works mostly like the mean
squared error, but will not be so strongly affected by
an occasional incorrect prediction. Mathematically
it is defined as:

L(y, ŷ) =

n∑
i=0

log(cosh(ŷi − yi)) (17)

• Binary Cross entropy: Cross-entropy loss, or log
loss, measures the performance of a classification
model whose output is a probability value between 0
and 1. Cross-entropy loss increases as the predicted
probability diverges from the actual label.

L = − 1

n

n∑
i=1

yi · log ŷi+(1−yi) · log (1− ŷi) (18)

• Kullback-Leible Divergence class [19]: The KL
divergence measures the distance between two den-
sity distributions. This divergence is also known as
information divergence and relative entropy. If the
densities P and Q exist with respect to a Lebesgue
measure, the Kullback-Leibler divergence is given
by:

L =

n∑
i

yi log
yi
ŷi

(19)

4) Activation Function: Is a function provided to an
artificial neural network in order to assist the network
in learning a complex model from data. The activation
function helps to restrict the output value of data within
the required data range. Furthermore, the activation
function is used to remove linearity from the neural
network. There are many different functions [12]:

• Rectified Linear Units (ReLu): is a non-linear
activation function, which is widely used in neu-
ral networks. The function is defined as: f(x) =
max(0, x).

• Exponential Linear Unit (ELU): is a variant of the
Rectified Linear Unit. ELU introduces a parameter
slope for the negative values of x. It uses a log curve
for defining the negative values:

f(x) =

{
x x ≥ 0
α(ex − 1) x < 0

(20)

• Exponential: The equation of the exponential func-
tion is f(x) = 2x .

• Scaled Exponential Linear Units (selu): is similar
to ELU with minor changes. The function is modi-
fied using α and λ as fixed value parameters derived
from the input as per [20]:

f(x) = λ

{
x x ≥ 0
α(ex − 1) x < 0

(21)

• Sigmoid is the most widely used activation function
and is a non-linear function. The sigmoid function
transforms the values in the range 0 to 1. It can
be defined as: f(x) = 1

e−x . The sigmoid function
is continuously differentiable and has a smooth S-
shaped function.

• Hyperbolic Tangent function (Tanh): is similar
to the sigmoid function but it is symmetric around
the origin. Symmetric results in different signs of
the output from previous layers, which will be fed
as input to the next layer. It can be defined as:
f(x) = 2sigmoid(2x) − 1, the output values lie
in the range -1 to 1. As compared to the sigmoid
function, the gradient of the tanh function is more
steep. Tanh is preferred over the sigmoid function
as it has gradients which are not restricted to vary
in a certain direction and also is zero centered.

5) Dropout: is at technique that removes or ignores some
units in a neural network. Dropout is dropping con-
nections in the network by dropping incoming and
outgoing edges of certain neurons. This is a random
process and the number specified means the probability
of each neuron to be removed from the network. The
main purpose of this technique is to prevent overfitting
and thus improving the performance. Overfitting means
the neural network too closely models the input data.
Model combination typically improves the performance
of machine learning models. Averaging the predictions
of several models, which are the result of dropout, is
most helpful when the individual models are different
from each other and each model is fast to train and is
used at test time. The dropout value used in this paper
ranged between 0.0 to 0.4.

6) Validation Split: As per keras official documentation,
it is a float value between 0 and 1. The fraction of
the training data is to be used as validation data. The
model will set apart this fraction of the training data,
will not train on it, and will evaluate the loss and any
model metrics on this data at the end of each epoch. The
validation data is selected from the last samples in the
x and y data provided before shuffling. The validation
split value used in this paper was ranging between 0.2
and 0.4.

V. RESULTS

Table II shows the best parameters found by each algorithm,
as well as the wall time and the number of runs. These results
are based on the validation of the training data. Table III shows
the results in terms of accuracy, MSE, MSLE, and AUC based
on the test data.

A. Grid Search Algorithm

Grid search tries all possible combinations of parameters to
identify the best parameters to achieve the best accuracy on
the binary classification problem. As shown in Table II, Grid
search finds the best number of hidden layers to be 3, which
is the highest number in the search space for this parameter.
The optimizer is Adam and the activation function is sigmoid.

Figure 1 shows the loss value at the first run was higher
than 0.9, and then at the end after all training cycles were
completed the best value for this data set was 0.092. The best
model found by grid search was tested and the accuracy was
0.8976 as shown in Table III, which has a higher loss value
in testing than the one achieved during validation.

From the confusion matrix in Figure 2, the model was
tested on 50,000 records, which around 45,000 were correctly
predicted; both true positives and true negatives. TPR is 0.91,
FPR is 0.43, sensitivity is 0.91, and specificity is 0.02.

Figure 3 shows the AUC curve, which as discussed before
measures the relation between TPR and FPR using different
thresholds. The AUC value is 0.792. This value will be
compared to other model AUC values in order to determine
the best model.

Fig. 1: Loss of Grid Search

Fig. 2: Confusion Matrix of Grid Search

B. Bayesian Algorithm

The values of the best model achieved by the Bayesian
algorithm are given in Table II. It consists of one hidden layer
with 100 neurons, the optimizer is RMSP, and the activation
function is elu.

The Bayesian algorithm consumed more time than the
genetic algorithm to find the best parameters. It stopped earlier
than the grid search; after 28,000 runs.

The loss value as given in Figure 4 dropped from above
0.9 to 0.0998, whereby the best model found achieved good
accuracy on the testing data set with a value of 0.8959;
the MSE and the MSLE values were 0.1041 and 0.0502,
respectively (Table III).

The confusion matrix for the Bayesian approach given
in Figure 5 shows the same results on the test set as the
grid search. The Bayesian algorithm had lower positive and
negative true values around 500 records. The algorithm has
the highest false positive rate compared to the other two
algorithms with a value of 0.45. The specificity is 0.02, and
sensitivity is 0.92.

Figure 6 shows the AUC for the Bayesian algorithm and
the area is 0.789, which is lower than the AUC of the grid
search algorithm.

TABLE II: Summary of Best Parameters

Grid Search Bayesian Algorithm Genetic Algorithm
Number of hidden Layer 3 1 3
Size of hidden Layers 150-100-50 100 150-100-50
Optimizer Adam Root Mean Square Propagation Adam
Loss Function mean squared error Kullback-Leible Divergence class Binary cross entropy
Activation Function sigmoid elu relu
Drop out 0.0 0.1 0.0
Validation Split 0.15 0.4 0.25
Time [h:m:s] 16:30:40 23:10:40 11:58:40
Number Of runs 28,800 28,000 20,000

Fig. 3: AUC of Grid Search

TABLE III: Accuracy, MSE, MSLE and AUC of all Algo-
rithms

Grid Search Bayesian Algorithm Genetic Algorithm
Accuracy 0.8976 0.8959 0.9059
MSE 0.0924 0.1041 0.0744
MSLE 0.0455 0.0502 0.0352
Precision 0.81 0.79 0.89
Recall 0.90 0.84 0.91
F1-score 0.85 0.81 0.87
AUC 0.792 0.789 0.826

C. Genetic Algorithm

The genetic algorithm’s best parameters, as given in Table
II, are 3 hidden layers with 150, 100 and 50 neurons in
each layer, with Adam as optimizer, and relu as the activation
function. This algorithm stopped earlier compared to the other
algorithms. It stopped after around 20,000 cycles and thus was
the fastest algorithm.

The genetic algorithm performed very well in solving this
problem and achieved the lowest loss value of 0.092 as
given in Figure 7. The best model tested achieved values for
accuracy, MSE, and MSLE with 0.9059, 0.0744 and 0.0352,
respectively (Table III). Precision, recall, and F1 score were
measured as well and provided in the table.

The confusion matrix in Figure 8 shows a lower false
prediction rate of 0.27, and a lower specificity value of 0.01
while the other algorithms’ value was 0.02.

Fig. 4: Loss of Bayesian Algorithm

Fig. 5: Confusion Matrix of Bayesian Algorithm

The AUC in Figure 9 shows the best curve among the
algorithms since it has a higher area value with 0.826.

Unfortunately a direct comparison with past research results
cannot be made, however, putting it into perspective in [21]
the same data set was investigated. The authors used different
machine learning algorithms and applied them to the Santander
Customer Transaction Prediction data set. The differences
compared to our work are that they used 16,000 instances for
the test set, while we used 50,000 instances. Furthermore, the
authors used undersampling and oversampling before applying
the different classifiers. The undersampling technique can
be defined as balancing the target distribution by random

Fig. 6: AUC of Bayesian Algorithm

Fig. 7: Loss of Genetic Algorithm

repetition of minority target instances, on the other hand over-
sampling balances the target distribution eliminating random
samples from the majority class instances. Oversampling and
undersampling help with class imbalances in the data set and
is usually the preferred technique used as a pre-processing
method in the data mining life-cycle and has shown to help
in achieving higher classification accuracy.

TABLE IV: Results after under sampling [21]

Models Accuracy Precision Recall F1 AUC
SVM (Linear Kernel) 0.74 0.74 0.73 0.74 0.74
SVM (Poly Kernel) 0.74 0.78 0.67 0.72 0.74
SVM (RBF) 0.50 0.00 0.00 0.00 0.50
Naıve Bayes 0.77 0.77 0.75 0.76 0.77
Logistic Regression 0.74 0.74 0.73 0.74 0.74
Decision Tree 0.59 0.59 0.59 0.59 0.59
Random Forest 0.75 0.75 0.76 0.75 0.75
Gradient Boosting 0.73 0.75 0.70 0.73 0.73
Ada Boosting 0.68 0.70 0.63 0.66 0.68

Table IV summarizes the results of the algorithms used in
[21] with the undersampling technique, and Table V shows the
results of the same algorithms after applying the oversampling
technique. The classification results after undersampling was
applied whereby the Naıve Bayes algorithm achieved the

Fig. 8: Confusion Matrix of Genetic Algorithm

Fig. 9: AUC of Genetic Algorithm

highest accuracy, Precision, F1 score and AUC with values of
0.77, 0.77, 0.76, 0.77, respectively. Random Forest obtained
the highest recall value of 0.76, and the oversampling has
better results with the random forest algorithm achieving
around 0.99 for all classification results. Gradient Boosting
and Decision Tree achieved values that are in the same range
as our approaches while all other algorithms had lower results.

TABLE V: Results after oversampling [21]

Models Accuracy Precision Recall F1 AUC
SVM (Linear Kernel) 0.73 0.74 0.73 0.73 0.73
SVM (Poly Kernel) 0.73 0.74 0.72 0.73 0.73
SVM (RBF) 0.80 1.00 0.60 0.75 0.80
Naıve Bayes 0.76 0.77 0.75 0.76 0.76
Logistic Regression 0.73 0.74 0.73 0.73 0.73
Decision Tree 0.94 0.90 0.99 0.94 0.94
Random Forest 0.99 0.99 0.99 0.99 0.99
Gradient Boosting 0.93 0.92 0.94 0.93 0.93
Ada Boosting 0.68 0.70 0.64 0.67 0.68

VI. CONCLUSION

The objective of this paper was to compare three different
algorithms for finding the best hyperparameters for a neural
network. The algorithms used were Grid Search, Bayesian

Algorithm and Genetic Algorithm. The Santander Customer
Transaction Prediction data set was chosen for the experiments
in order to determine if a customer will do a transaction or not.
The evaluation process focused on loss and accuracy, MSE,
MSLE, AUC, confusion matrix, and wall time. The hyperpa-
rameters used were hidden layer number and size, optimizers,
loss function, activation function, drop out, and validation split
with different values each. The results of the experiments were
similar, however, the genetic algorithm performed better than
the grid search followed by the Bayesian algorithm. For the
best hyperparameters the first two algorithms (Grid search and
Bayesian) had the same number of hidden layers as well as
the same optimizer, while all other parameters were different.

REFERENCES

[1] N. Chu, J. Li, Methodology study of classification algorithm in TCM
Zheng diagnosis, IEEE International Conference on Bioinformatics and
Biomedicine, pp. 22-25, 2014.

[2] S. Buluswar, B. A. Draper, Nonparametric classification of pixels under
varying outdoor illumination, Proc. SPIE – Int. Soc. Opt. Eng., pp. 1619-
1626, 1994.

[3] T. Joachims, Text Categorization with Support Vector Machines: Learn-
ing with many Relevant Features, Springer, 1998.

[4] R. M. Silva, T. A. Almeida, A. Yamakami, Mdltext: an efficient and
lightweight text classifier, Know. Based Syst., pp. 152-164, 2017.

[5] W. G. Lehnert, S. Soderland, D.B. Aronow, F. Feng, A. Shmueli,
Inductive text classification for medical applications, J. Exp. Theor. Artif.
Intell., pp. 49-80,1995.

[6] G. Luo, A review of automatic selection methods for machine learning
algorithms and hyper-parameter values, 2016.

[7] O. Mersmann, H. Trautmann, C. Weihs, Resampling methods for meta-
model validation with recommendations for evolutionary computation.
Evolutionary Computation, pp. 249-275, 2012.

[8] D. Marinov, D. Karapetyan, Hyperparameter Optimisation with Early
Termination of Poor Performers, 2019.

[9] J. Bergstra, Y. Bengio, Random Search for Hyper-Parameter Optimiza-
tion, Journal of Machine Learning Research 13, pp. 281-305, 2012.

[10] C. Di Francescomarino, M. Dumas, M. Federici, C. Ghidini, F. M.
Maggi, W. Rizzia, L. Simonetto, Genetic Algorithms for Hyperparameter
Optimization in Predictive Business Process Monitoring, Publication:
Information Systems, January 20, 2018.

[11] J. Bergstra, R. Bardenet, Y. Bengio, B. Kegl, Algorithms for Hyper-
Parameter Optimization, Neural Information Processing Systems Con-
ference, 2014.

[12] F. Chollet, and others, Keras, 2015, keras web page: https://keras.io.
[13] Santander Bank, Santander Customer Transaction Predic-

tion Version 1, Retrieved from https://www.kaggle.com/c/
santander-customer-transaction-prediction/data, 2018.

[14] W. Meira, M. J. Zaki, Data Mining and Analysis: Fundamental Concepts
and Algorithms, ISBN: 9780521766333, 2014.

[15] C. Sammut, G. I. Webb, Encyclopedia of Machine Learning and Data
Mining, publisher: Springer US, 2017, isbn:978-1-4899-7687-1.

[16] S. Ruder, An overview of gradient descent optimization algorithms,
arXiv:1609.04747, 2017.

[17] A. de Myttenaere, B. Golden, B. Le Grand, F. Rossic, Mean Absolute
Percentage Error for Regression Models, Neurocomputing, Elsevier, Ad-
vances in artificial neural networks, machine learning and computational
intelligence, 2016.

[18] C. Lee, C. Lin, A Study on L2-Loss (Squared Hinge-Loss) Multiclass
SVM, Neural Computation, pp. 1302-1323, 2013.

[19] F. Pérez-cruz, K. Leibler, Divergence Estimation of Continuous Distri-
butions, Proceedings of IEEE International Symposium on Information
Theory, pp.1666-1670, 2018.

[20] Z. Huang, T. Ng, L. Liu, H. Mason, X. Zhuang, D. Liu, SNDCNN: Self-
normalizing deep CNNs with scaled exponential linear units for speech
recognition, 2020.

[21] R. Mohammed, J. Rawashdeh , M. Abdullah, Machine Learning with
Oversampling and Undersampling Techniques: Overview Study and Ex-
perimental Results, 2020 11th International Conference on Information
and Communication Systems (ICICS), Irbid, Jordan, 2020, pp. 243-248,
doi: 10.1109/ICICS49469.2020.239556.

