
Improving Transaction Speed and Scalability in
Blockchain Systems

Joshua Aaron DeNio
Department of Computer Science

North Dakota State University
Fargo, North Dakota

joshua.denio@ndus.edu

Simone A. Ludwig
Department of Computer Science

North Dakota State University
Fargo, North Dakota, USA
simone.ludwig@ndsu.edu

Abstract—This paper presents a parallel mining architecture
model intended to be used in blockchain systems to improve
transaction speed and network scalability while maintaining
decentralization. Typical blockchain validation times are sig-
nificantly slower than traditional digital transaction systems.
The model proposed is intended to allow devices with limited
computational power to make meaningful contributions to the
blockchain system by introducing parallel proof of work, man-
aged by automated manager nodes. This will allow blockchain
systems to be integrated into cloud environments and the internet
of things. The proposed model is also intended to address and
reduce power consumption problems current blockchain systems
face, by allowing the network to validate transactions without the
need of high-powered specialty mining machines. Automation and
virtualization of network nodes is intended to utilize hardware
already online to preform parallel proof of work together in
contrast to nodes all competing against each other and ultimately
wasting electrical power.

Index Terms—Blockchain, internet of things, parallelism,
power consumption, energy efficiency, parallel proof of work,
manager automation

I. INTRODUCTION

Blockchain technology has gained popularity in recent years
causing a large influx of new interests in the potential ap-
plication of blockchain technology into real world systems.
Blockchain systems serve as the foundational technology
behind cryptocurrencies and smart contract systems. In recent
years blockchain systems have gained international attention
particularly in the field of cryptocurrencies. This renewed
interest has caused stresses on the current mining pools and
in the cases where mining pools cannot keep up with the
demand has even temporarily caused outages on some block
chains [1], [2]. This paper intends to introduce a change in
the underlying architecture of blockchain mining that will be
able to support the vast expansion and scalability while not
wasting valuable resources. Current mining approaches are
very resource intensive and compete with one another over
mining the same blocks. In the current model only one miner
or mining pool can actually solve a proof of work on a block at
a given time, and as a result the remaining miners and mining
pools have wasted their resources trying to mine the block
[3]. This waste of resources causes the cost of contributing
to mining to go up significantly as to remain competitive,
the miners must either join a large mining pool or devote

intensive resources comparable to a mining pool in order to
be capable of completing a proof of work before a mining
pool can complete the same block [4]. Therefore, research
is needed to find a more efficient way to process blockchain
transactions that will not result in the waste of electricity.

II. RELATED WORK

Bitcoin-NG, introduced in 2016, presented the concept of
decoupling Bitcoins blockchain task into two planes: a leader
selection and exchange serialization plane [5]. Bitcoin-NG also
partitions time into epochs where each epoch has a solitary
leader. In our application of managers, the leaders will form
a team where one is active, and the remaining leaders are
available to take over if something happens to the active
manager. The solitary leader used in Bitcoin-NG introduced a
single point of failure, which our solution addresses by adding
redundancy to the role with the implementation of a team of
backup managers in proportion to the network size. These back
up managers will all be in synch with the active manager, and
when the active manager fails the group will promote a new
manager to active status randomly, then update the miners of
the new active manager. Bitcoin-NG uses two types of blocks
one being a Key Block and the other being a Microblock [5].

Another related approach is that presented by Xavier Boyen
et al. also in 2016 [6]. In their approach each transaction is
connected to two or more verified transactions and miners
verify new transactions in a parallel network. The network
used consists of a graph structure like the network structure
used in Bitcoin, Tangle, and IOTA [7]. The Boyen model also
utilized proof of stake rather than proof of work to validate
blocks and append them to the blockchain. Boyen’s approach
has done away with the traditional blockchain and implements
a lean graph of transactions making verification times much
faster.

Hazari and Mahmoud presented a model in 2020 which
the proposed approach is based on [3]. Their presented model
makes use of a single manager node and a network of miner
nodes. The manager is selected based on which node com-
pleted the last block making it easy to predict and target the
manager. The network is a peer-to-peer network, which also
poses potential vulnerabilities to attack as a single node loss
could cause the network to temporarily loose communication

capabilities as nodes reconnect. The aim of this paper is
to address the possible weaknesses of the Hazari-Mahmoud
model and make a derived model that is more robust and
resistant to node failures while maintaining the benefits of the
Hazarti-Mahmoud model of distributed parallel proof of work.
The proposed approach differs from the Hazarti-Mahmoud
model in that it introduces multiple manager roles to account
for redundancy and introduce more recoverability. Also, the
proposed approach introduces a star like hybridization of
the ring peer-to-peer network topology used in the Hazarti-
Mahmoud model. This interconnects each node more tightly
with other nodes in the network and allows for better data
retention and less local forking of transactions entering the
mempool as more nodes will be present locally to verify the
incoming transactions.

The managers used in the proposed solution are based on the
idea of coordinator selection, which was first implemented by
Gerard Lelann in 1977 [8]. The proposed solution greatly im-
proves their role and increases redundancy thus, reducing any
potential for a point of failure. This role of process coordinator
is a crucial part of improving the quality and performance of
a distributed system. Dework et al. introduced a consensus
protocol using coordinator election for a partially synchronous
processor in 1988 [9]. In their work, the coordinator distributes
work to peers in proportion to the number of peers within the
network. When the work is completed, a final decision is made
using the consensus protocol to validate the work.

III. PROPOSED APPROACH

In this paper, we present a method to improve the transaction
speed and scalability by implementing parallel processing and
validation of blocks across a decentralized network of peers.
In the method proposed most of the nodes will perform work
to validate the same block and the remaining nodes will be the
active manager and backup managers, respectively. Miners will
receive data from the active manager and the backup managers
will receive updates from the active manager and take over if
the active manager becomes unavailable. We will develop a
consensus mechanism to ensure that managers are randomly
selected, and nothing can be done to force a specific node to
become a manager.

1) Managers: Managers will be implemented in two forms:
an active manager and a team of support managers we will
call the management team. The active manager will distribute
transaction data from the mempool to the miners and will
issue each miner a set of nonce values. The active manager
will ensure that no two miners receive the same nonce values
for a given block. The manager is also responsible for creating
the transaction hash that miners are to solve, along with the
nonce value set they will apply to attempt to solve the hash.

When the nonce values are depleted, the active Manager
will generate more and disperse them as needed. Another roll
of the active Manager is to synch with the management team
and keep them up to date with its activity as well as nonce
ranges and data dispersed.

The role of the Support Managers is to form a team and if
needed replace the active Manager in the event of a failure. The
replacement should be randomly chosen to prevent a malicious
user from gaining control over a manager and tampering
with the network. The Support team will periodically elect
new managers at random so long as they meet the system
specifications required to fill the role. The management team
will be a parallel network nested within the main network and
should be continuously in contact with each other to ensure
they are all in synch and contain the same information. If a
single manager has differing information the others will expel
the corrupted manager from the team and elect a replacement.

The management team will replace the active manager at
given time intervals we will call epochs like those used in
Bitcoin-NG [5]. This will be done to give rest to hardware
components and ensure that the management role does not stay
active on a specific hardware device for an extended amount
of time. This is directed at reducing the ability of users from
tampering with the active manager as they should have no way
of knowing what node will become the active manager or for
how long it will be active. The management team will monitor
its members and elect new Support managers as needed and
rotate them in and out of service depending upon the needs
of the network. The level of redundancy required will need
to dynamically scale with the size of the network with a
percentage of the network being support managers to ensure
that there will never be a failure that will remove them all at
once. If possible, they will be geographically chosen to ensure
that they are dispersed enough to evade failure even in the
case of a continental power outage. The managers status will
define its role and the support managers will be tasked with
monitoring what manager is currently active and in the case
that an incursion occurs, and the active manger is changed
without the consensus of the group, the offending node will
be removed from the network.

In the case that the manager is not an active manager it
will be tasked with monitoring the activity status of the active
manager and verifying security, optionally it could temporarily
act as a worker if everything is up to date. If the active
manager is not active the group will elect a new active manager
based on the capabilities of the available managers in a semi
random selection putting preference to those with the highest
computational capability. It is important that it be difficult to
predict what manager will step up to fill the role to reduce the
likelihood an attacker is able to target the next active manager
in advance. In the case of the node being the Active Manager,
it will be tasked with distributing data and nonce values and
reporting to the management team to verify that it is active
and inform the team of the current data and nonce values in
operation.

2) Miners: Miners in parallel mining will initially send
a request to the management team, which will be accepted
by the active manager. The Active Manager will then send a
block of data and a set of nonce values to the miner. No two
miners should be doing the same work at the same time. The
miner will attempt to solve the puzzle and generate a suitable

hash value using the set of nonce values received. Once a
suitable solution is found the successful miner will broadcast
the completed block and the other miners will check to verify
whether the solution is valid. If the solution is acceptable,
they will update the manager and they will receive the next
set of data to begin working on the next block. All miners will
receive the same data set but each one will work on a separate
set of nonce values. Once the set is depleted and if no solution
was found a new request will be sent to the Managers and the
miners will await a new set of nonce values.

At this point it will contact the management team and
receive an update to its blockchain data. The miner will then
request data to work as well as data relating to management
team rolls used to validate managers as group consensus will
be used to ensure that false managers cannot be injected into
the management pool and only those elected are accepted as
managers. The miner will then be given a roll by the man-
agement team. This role may be as a miner, or a supporting
manager based on the needs of the network. In the case that the
node is elected as a manager it will accept the role. Otherwise,
the node will then receive data and or nonce values and will
move on to mine the hash. If it finds a solution it will broadcast
the solution to be validated by the other nodes. If another node
broadcasts a solution the solution will be checked and if valid
added to the blockchain and if invalid measures will be taken
to address the issue. Next, a security and validation phase will
be executed to ensure that only authorized nodes are serving
as managers and in the case that a node is not abiding by its
designated role or otherwise posing a threat to the network
actions will be taken to remove the threat from the network.

A. Network Communication and Security

In traditional blockchain systems nodes are connected to one
another via intermediate nodes. In our proposed approach to
parallel mining, the nodes will still be connected via a peer-
to-peer network, but they will also be connected to a team
of managers that are also interconnected and in sync with
each other. Each miner communicates to all managers and all
managers communicate with all miners and other managers.
Thus, each node is directly communicating with the managers
and its peers, and the managers are communicating with
each other collectively. Miners communicate with other miners
using standard peer-to-peer ring topology communication but
communicate with managers using a modified star topology
resulting in a hybrid topology. This is to ensure redundancy
and prevent a single point of failure. All communication
should be verified from the other sources and rejected if the
data is invalid. Consensus is required to validate any block and
managers must agree upon the election of new managers. This
consensus will ensure decentralization and prevent tampering
with the network. This modified star topology differs from the
ring topology used in existing approaches and introduces more
resiliency while maintaining concurrency in communication.

1) Points Of Failure: When compared to existing tech-
niques such as those presented by [5] and [6] the additional
backup managers remove the points of failure present in both

implementations as the before mentioned approaches both
utilize a single manager that when targeted or removed have
a noticeable impact on the network’s functionality and opera-
tional capability. In the proposed approach the vulnerabilities
presented by only having a single manager is addressed by
providing backup managers that can step in and fill the role
when needed. This will result in very little impact of the loss
of a single manager. Also, the network itself is more robust
than that used by [5] and [6] as a normal peer-to-peer network
will suffer when nodes are removed, and interruptions can
occur. In contrast the proposed approach will maintain more
communication links and even with the removal of nodes no
interruption can occur as the remaining links will serve to
maintain communication across the network. Managers will
also be more difficult to target as the roles will be changed
for each block and there will not be an obvious way to predict
what node will become the next Active Manager. In contrast to
the approach presented by [6] where the manager is assigned
based on the node that has solved the last block making
targeting of the active manager more straightforward. Man-
agers in the proposed approach will be elected semi randomly
with a preference to those nodes with greater computational
capabilities and even when a node becomes the active manager
the specific address of the active manager is not directly logged
in the blockchain for users to view. The active manager will
not be directly communicated to instead the miners will send
their requests to the manager pool and the communications
will be accepted by the manager acting as the Active Manager.

2) Denial Of Service Attacks (DDOS): Research into the
security vulnerabilities of blockchain technology indicates that
DDOS attacks have greater effect on blockchains than on
other more traditional transaction networks [10]. In the event
of a Denial of service attack the Active Manager will be
overwhelmed and the management team will need to elect
another active manager. At this point the management group
should trigger a defensive feature to detect the reason that the
active manager has failed. An effective detection mechanism
should be developed and deployed on the manager nodes to
detect the initiation and execution of a DDOS attack and
impose countermeasures to mitigate the effectiveness of the
attack. Once detected the management team or active manager
can blacklist or expel an offending node from the network if
requests from the node seem to indicate a possible DDOS
attack. Each node serving as a supporting manager will be
periodically monitoring the active manager and ensuring that
it is responding to requests effectively. This monitoring process
can be used to detect a DDOS attack as the number of requests
will be significantly higher than normal and should have other
characteristics that separate these requests from valid requests
that can be used to identify an attack.

3) Malicious Managers and Detection Methods: Malicious
managers are a possible threat that will be addressed by
the management team by periodically verifying that only
managers that have been elected are serving as a manager. If a
node is detected that is acting as a manager, but its election is
not traceable by the Support Manager pool it will be expelled

from the network and if needed any invalid data added to
the blockchain by the expelled manager will be rolled back to
prevent corruption of the system by malicious managers. Only
nodes that are dynamically elected may serve their respective
roles. Logs will be maintained in encrypted form to allow the
managers to trace all the roles served and elected for each
block.

4) Validation: Validation will follow existing methods of
peer consensus used in blockchains such as Bitcoin. Forks
that deviate from the accepted branch of the blockchain will be
discarded in favor of the longer accepted valid blockchain pre-
venting malicious nodes from attempting to insert transactions
into the blockchain. This does not differ from the methods
used currently in proof of work blockchains. Double spending
verification will be handled like that of Bitcoin with no real
difference in the block validation process, and the number
of blocks used to validate transactions will not differ from
validation methods employed by the Bitcoin network.

B. Genesis Block

The initial block will be created by the miners if the
blockchain is empty. This first block will contain no trans-
actions. Initially all managers will be elected at random using
a test protocol to determine that they possess the required
computational capabilities to fulfill the role. The node that
completes the first block will become the active manager for
the next block. Each new block will start a new period that
we will call an epoch, with a new active manager managing
each new epoch.

C. Manager Election

Support managers will be elected in an unpredictable fash-
ion with consideration to their computational contribution
to the network. Nodes that provide a greater computational
contribution will have increased odds of being elected to the
management team. This will ensure that each manager elected
has the capability of fulfilling its role. Manager candidates
can be selected based on their computational capabilities and
added to an array. Managers can then be selected from the
group of possibilities using random number generation from
the management team to select the index of the newly elected
manager. This should result in managers being capable of han-
dling the loads required to fulfill their roles and ensure that the
incoming managers cannot be predicted by outside observers.
If for some reason the active manager is unresponsive or slows
to an unsatisfactory response time the management team will
elect a replacement to fill the active manager role. In cases
where the system has scaled to the point that a single node
can no longer support the tasks of the managers, nodes can
be combined to divide the tasks and fill the role as if they
were a single node. This can be done using virtualization
to increase the computational capabilities of nodes within
the network [11]. As managers require more computational
capability than miners the management team will need to be
capable of measuring and dynamically scaling to meet the
networks requirements.

This application of rotating elected managers ensures that
no single node can gain excessive influence over the network
thereby maintaining the decentralized nature of the system.

D. Algorithms

In the proposed parallel mining system, each miner will
have an equal opportunity to become a manager. Each miner
will be compensated for their contribution to the network
at the end of each epoch. This role of compensation will
be monitored by the group of managers and only by full
consensus will they distribute pay to the workers. Obviously, it
will be beneficial to have the most powerful hardware involved
in the management role. The miners who invest more resources
into producing the greatest mining power will have higher
likelihood of being elected to the management team. And
as a reward will gain more revenue based on their network
contribution. As the more powerful machines in the network
solve more nonce values, they will in turn receive larger
compensation than those who work less. Algorithm 1 and 2
show the basic algorithm chosen for block solving and block
validation.

Algorithm 1 Block Solving Algorithm
1: Step 1: Initialization
2: Step 2: Record creation
3: Step 3: Solve puzzle
4: for i = nonce list[0] to nonce list.length()− 1 do
5: if blockchain.length() > block index then
6: Block was solved call validate block function
7: end if
8: Solution = Sha− 256(record+ nonce list[i])
9: if Solution is valid then

10: Broadcast the solution
11: end if
12: if Solution is invalid and block is not solved then
13: Request new nonce list and restart
14: end if
15: end for

Algorithm 1 shows the details of the algorithm used to
solve blocks. This algorithm is written using pseudocode and
is intended to convey the basic logic involved in the block
solving process. Nonce values and data will be provided by
the Active Manager and backed up to the supporting managers
to preserve redundancy and recoverability in the case of a node
failure.

E. Workload Size and Data Distribution

Workload size will be determined by the capabilities of the
miner as well as its availability. The Active manager will dis-
tribute work in accordance with a given node’s computational
ability thus maximizing the effectiveness of the network and
reducing the instances where a node receives more work than
it can process in a reasonable period of time.

The active manager is responsible for transmitting data such
as the transaction hash, as well as nonce values to miners. If

Algorithm 2 Block Validation Algorithm
1: if previous block index! = new block index then
2: Return False
3: else if previous block hash! = new block hash then
4: Return False
5: else if new block.hash() > target then
6: Return False
7: else
8: Return True
9: end if

there are n miners active on the network the manager will
distribute n distinct nonce sets. It is important that no two
distributed nonce sets share any values. When any node has
depleted its set of nonce values it will send a request for
a new set to the management team and the active manager
will distribute a set dependent upon the node’s capacity. High
throughput nodes will receive larger sets vs smaller nodes will
receive smaller workloads. New miners joining the network
will receive data (the hash) and a set of nonce values to work
with.

F. Transaction Speed

The goal of implementing parallel mining is to dramatically
improve the transaction and verification times as well as
increase the overall scalability of the network. Using a parallel
mining approach, miners can quickly reach consensus and
verify transactions efficiently. This increase in efficiency and
reduction in transaction times will improve the user experience
and create a transactional environment that users can come to
rely upon. In contrast to solo mining parallel mining provides
a significant improvement in transaction speed and throughput.
Examples of this improvement is seen in the implementation of
mining pools as well as previous work on parallel mining [3],
[5]. Later in this paper we will discuss some data comparing
solo mining to parallel mining for more details.

G. Fees

Transaction fees are used on many blockchains, the most
popular of which is the Ethereum blockchain and its use of gas
to pay transaction fees. Fees can easily be incorporated into
parallel mining, but it is important to note that fees should be
scaled in relation to the transaction size. Ethereum has some
drawbacks when processing small transactions as the fees can
cost more than the transaction itself in some cases [12]. This
is counterproductive to encouraging users to utilize a network
so ensuring that fees remain affordable and proportional to the
transaction size is crucial to maintain usability. A reasonable
service fee would be somewhere between 1% and 2% of the
overall transaction but there must also be an upper and lower
bound to ensure that no customer is charged an unreasonable
transaction fee. Say for example if a transaction is an exchange
of $100,000,000 or 1 cent a percentage service fee will not
make the transaction viable on the network and customers
will go elsewhere to process their transactions. Thus, keeping

transactions affordable is a key element to the overall success
of the network.

H. Scalability

Parallel mining of proof of work is quite scalable as the
more users using the network the more miners become a
part of the network. Users can also opt to connect small
computational devices to a single account making use of
the internet of things to contribute to the blockchain and be
rewarded based on the contribution utilized. If the network
grows in size to the point that a single hardware node can
no longer support service as the Active Manager, the Support
manager pool may elect to elect multiple nodes as the Active
manager and in this case the nodes will work in parallel
to perform the work required of the Active Manager role.
This creation of a virtual or composite node should extend
the scalability of the system indefinitely as the more nodes
are added to the network the more powerful and capable the
management team will become. The algorithms required for
this kind of dynamic scaling can be developed in future work.

I. Parallel Mining compared to Pool Mining

While pool mining is slightly more resource efficient as
only one node serves as a manager it is vulnerable to attacks
and introduces centralization as the pool manager is not a
free part of the network like those used in parallel mining but
controlled by the mining pool administrators. As such mining
pools do away with the concept of decentralization. In contrast
parallel mining maintains decentralization while making use
of a distributed workforce to faster solve proof of work.

1) How Proposed Solution Addresses Tragedy Of Commons
Problem: The tragedy of commons will be addressed by mak-
ing even small computational devices capable of meaningful
contribution to the network. This will ensure that there will
always be a surplus of miners and so long as all miners that
are being utilized receive a fair share of the reward based on
the amount of work performed there will be a reason to keep
miners available to the network to provide services and collect
the rewards of their contribution.

2) Integration With Cloud: Cloud resources work well with
the proposed parallel approach as nodes hosted on the cloud
can contribute their resources when the resources are not being
utilized and by setting a small workload size, they can request
packets of nonce values that can be small enough for them to
contribute while still being able to quickly transition to other
work as required.

3) Integration With Internet Of Things: One of the most
novel characteristics of this parallel decentralized blockchain
network is its ability to integrate with the internet of things;
allowing small devices to contribute their computational power
to processing transactions on the network. This could dramat-
ically change the way cryptocurrencies are used as transaction
validation times could be reduced and transactions would be
processed quite quickly.

4) Node Virtualization: Smaller nodes can be combined
dynamically by the management team to produce virtual nodes
that fill the requirements of the system by allotting resources
from smaller nodes to work together as a single node. This will
in theory allow computational devices with limited abilities to
contribute to the network by joining together as a single virtual
node [11]. Most likely this will provide the most utility when
the network has reached a large size and single management
nodes can no longer manage the large number of nodes in
the network. By increasing the capability of the managers
by merging node resources we can essentially create super
computers using the collective capabilities of smaller nodes
serving as a single node. This will allow the network to infinity
scale as new nodes are added to the system.

J. Rewards

Block rewards will be distributed by the management team’s
consensus based on the miner’s contribution to the block
with payments being distributed each epoch. The collective
of manager nodes will distribute the block reward based on
the work performed by each miner so long as they made
a meaningful contribution to the processing and validation
of the block. Transaction fees will also be distributed based
on the level of involvement a particular miner contributed to
possessing the block. The most basic approach would be to
sum up the transaction fees and add them to the block reward
for distribution. Both the fees and block reward will benefit
from being dynamically adjustable to ensure stability of the
network and prevent inflation or scarcity issues that may arise
in the future to unforeseen events.

K. System Events

1) Multiple Nodes Solving Hash Simultaneously: If multi-
ple nodes solve the hash at the same time the first solution
received by the active manager will be considered the first to
be completed and be moved on to the block validation process.
There is also the option of following traditional blockchain
approaches and let forks occur and prune them after a set
number of blocks choosing the longest chain as the valid path.
This approach has been deemed effective and used in most
mainstream blockchains in use at the time of this printing.

2) Nodes Entering Network: New nodes entering the net-
work will make a request to the management team and will
receive an updated dataset to ensure that the new node is
concurrent with the current state of the blockchain. If there
are no managers active the new node will receive its data from
the other nodes on the network and the process of electing
managers will be initialized by the collective.

3) Nodes Leaving Network: When a node leaves the net-
work, it will have minimal impact on the network as workers
can freely leave and if the nonce solution was in its set a new
solution will be found using another nonce value. If the leaving
node is the active manager, the management team will elect
a replacement and the parallel mining will continue without
any noticeable impact. A new manager will be added to the
manager support pool to replace the manager that was elected

to become the new active manager. The number of managers
in the pool will be dynamically scaled in proportion to the total
size of the network and optimal redundancy requirements.

4) A Miner Requests New Nonce Range Before Completing
Range: This is a highly unlikely situation and indicates a flaw
in the operation of the miner. This will be counterproductive
as the solution may be in one of the skipped values. While
this will not cause damage to the networks functionality due
to there being multiple possible solutions it will reduce the
nodes chances of solving the puzzle thus, it is very unlikely
that nodes would be altered to cause such a behavior.

5) Active Manager Goes offline and Manager From Backup
Manager Pool Found Solution to Hash: Manager candidates
will not be permitted to be elected if the manager in question
has submitted a hash solution to the management pool in the
absence of an active manager. The new active manager will be
elected and the manager that found the solution will be treated
as a normal miner until the block has been finalized.

IV. EXPERIMENT AND RESULTS

In this section experiments have been conducted on sev-
eral test environments including both physical and cloud-
based systems. The intended goals of these benchmarks are
to illustrate the advantages of parallel proof of work using
multiple manager nodes. To achieve this, we will start with the
environment setup and network communication using SSH to
establish a peer-to-peer network. The proposed modified star
network was modeled using MPI communication via SSH.
To establish the benefit of adding nodes to the network a
benchmark program was made using the SHA-256 hashing
algorithm to hash simple messages and the timer function was
used to track the number of hashes that can be completed
per second; by executing a set number of hashes and timing
how long it takes to complete them with various numbers of
nodes active as miners in the network. Several benchmarks
will be implemented using the Go programming language and
compared to that used in the work of Hazari and Mahmoud.
Failures will be introduced, and block time will be measured
using a timer to determine the changes in block time when
manager nodes fail. These results will show the benefit of
manager redundancy and the impact of a failed manager node
on the parallel system. In the case of the proposed approach
the backup managers will be set up to take over the active
managers role in the event that a miner requests a nonce set,
and the active manager fails to notify the management team
that it has filled the request. In a real-world implementation,
there will be a much more complicated manager election pro-
cess that will fill this role which was not implemented during
the testing process. This election process can be simulated by
requiring the incoming manager to perform a small amount of
work before taking over to better represent the time taken to
elect a new manager, and to ensure that the Active manager
actually needs to be replaced.

A. Environment
This paper research made use of several test environments

including a physical Linux cluster, a cloud cluster, and Rasp-

berry Pi to collect benchmarks on parallel proof of work. The
environments will be discussed in the following subsections
in detail.

1) Physical Environment: Local benchmarks were taken
by setting up a parallel computing environment consisting of
8 Linux machines running Ubuntu version 16.4 LTS. These
machines were connected via ethernet cables and a switch
with static IP addresses assigned to each machine to create a
Linux cluster. Table I displays the environment specifications
used to produce the benchmarks computed on the network.
The network itself utilized password-less communication via
ssh using stored key value pairs to connect 8 machines to form
a Linux cluster on a LAN. The machines were connected via
ethernet cables routed through a switch. The host files were
edited to facilitate communication and NTFS was added to
allow the machines to share programs across the LAN. Most
of the benchmarks were executed using a Sha-256 hashing
algorithm (Secure Hashing Algorithm 256). The reason that
this hashing algorithm was chosen over others is that it is
used in Bitcoin mining and the hash value is restricted in size.
What this means is that for any given input message the output
hash value will be 256 bits in length. This feature will greatly
improve data storage capacity when the messages become
large. The tests conducted on the Raspberry Pi platform were
made utilizing the Blake2 hash within the random-x hashing
algorithm used in mining Monero. This paper is focused on the
increase in hashing capabilities provided with parallel proof of
work so less focus will be given to the particularities of the
hash functions themselves as the concept of parallel proof of
work with multiple manager redundancy can be implemented
with any blockchain that utilizes proof of work regardless of
the hash function used. Sha-256 is a good starting point due
to its use in the Bitcoin network and efficient data storage
capabilities.

2) Cloud Environment: A cloud environment was also
deployed using both Microsoft azure as well as Google
Cloud Platform. Both deployments contained 8 nodes with
2 cores each. A virtual network was set up on Azure and
communication between nodes was conducted via SSH. The
performance of the two providers did not show any substantial
differences between the two providers. Benchmarks were taken
on the cloud environments to obtain block times as well as the
possible hashes per second on the network with differing node
counts.

B. Benchmarks

Hash difficulty refers to the number of leading consecutive
zeros of an acceptable hash. The greater the number the more
difficult the hash is to solve and by extension the more work is
required to solve it. Running a benchmark with a difficulty of
1 will be solved significantly faster than the same input with
a hash difficulty of 10. The average time taken to solve a hash
in seconds is used to measure the performance of the network.
The average is calculated by measuring the time taken to solve
a block a set number of times than dividing the sum of all
times by the number of blocks solved. Hashes per second are

TABLE I
ENVIRONMENT SPECIFICATIONS

Architecture x86 64
CPU op-mode(s) 32-bit, 64-bit
Byte Order Little Endian
CPU(s) Per node 4
Thread(s) per core 1
Core(s) per socket 4
Socket(s) 1
NUMA node(s) 1
Vendor ID GenuineIntel
CPU family 6
Model 60
Model name Intel(R) Core(TM) i5-4570S CPU @ 2.90GHz
Stepping 3
CPU MHz 3303.323
CPU max MHz 3600
CPU min MHz 800
BogoMIPS 5786.89
Virtualization VT-x
L1d cache 32K
L1i cache 32K
L2 cache 256K
L3 cache 6144K

calculated by timing the number of seconds taken to solve a
block then dividing that time by the number of nonce values
used to find the solution to the block. Optionally hashes per
second can be measured by starting a timer, preforming a set
number of hash attempts then stopping the timer and dividing
the number of hashes executed by the number of seconds the
timer has run. When measuring hashes per second we will see
that different hash algorithms produce differing results and the
hash difficulty IE the number of leading zeros will also have a
significant effect on the hash speed of the benchmarks. Many
CPU and GPU manufactures will opt to post hashes per second
for their hardware that is excessively high in comparison to
the hashes that will be seen when mining a crypto currency.
For example, the Raspberry Pi is said to be able to produce an
average of 108 hashes per second but at operational difficulty
levels it only manages an average of 2.3 hashes per second as
seen in Table II. The formula to determine the average number
of hashes required to solve a block in the Bitcoin network can
be seen in Equation (1):

Hashes per block = (Difficulty × 232) (1)

with a maximum difficulty of 2256−1.
As of the time of this writing Bitcoins hash difficulty ranges

significantly higher than that capable of being supported using
CPU mining. The difficulty adjustment is directly related to the
total mining power estimated by the Total Hash Rate (TH/s)
chart [13]. This means that the hash difficulty is dynamically
scaling to become more difficult over time. With our proposed
approach the difficulty will also scale based on the networks
capabilities to ensure against forking attacks, but care will be
taken to ensure that the difficulty never exceeds the networks’
ability to efficiently handle transactions. The difficulty used in
our calculations refers to the number of leading zeroes the

resulting hashed value must have to be considered a valid
solution.

Benchmarks for hashes per second were implemented using
a difficulty level of 1 and the chrono library in C++ using
mpich. Network communications used were broadcast, send
and receive. Between nodes serving the designated roles, all
roles were hard coded and dynamic node scaling was not
implemented at the time of benchmarking. Other benchmarks
were collected using the time library of the Go language with
network communications provided by the go-libp2p library.
Code relating to the benchmarking process can be found at
[14].

Solo mining results in the speed of the fastest node being
the average as the fastest node will always solve the hash
before the others and the work of the others is wasted except
during the validation step. During solo mining all the nodes
are competing against one another to solve the hash before
the others and only the fastest node will receive the reward
for solving the proof of work.

Fig. 1. Solo Mining Time in Seconds to Complete Hash

Figure 1 shows hashing times of a set of nodes solo mining.
Note that the solution times are relatively the same regardless
of the number of nodes as any advantage gained by introducing
new nodes is only going to be visible if the new node has more
computational ability than the others on the network. When the
computational ability of the nodes is identical the hash times
will be very close with minor deviations as other tasks run
in the background. After averaging the runs, we get consistent
results with no added benefit from the addition of more nodes.

Fig. 2. Parallel Mining with Managers in Seconds to Completion

Figure 2 displays the benefit of additional nodes when using
parallel proof of work. As seen in the figure the addition
of new nodes has a visible effect on the hashing power of
the network and drastically reduces the time taken to solve a
block especially in the case of higher difficulty hashes. With
a difficulty of 4 and below there is a relatively low amount of
variance in the time taken to solve the hash due to its simplicity
but as the difficulty increases the advantage of having more
nodes begins to become greater. Once we reach a difficulty of 7
the benefit of parallel mining becomes obvious. There is little
difference in hashing speeds with the addition of additional
backup managers as the backup managers can still contribute
to the mining process so long as they are not the designated
active manager. If a manager finds the solution and the active
manager is offline the management team will not permit the
manager that found the solution to be elected as the active
manager.

Figure 2 shows some interesting data relating to the hash
difficulty and the number of nodes. Where the hash difficulty
is low the time reduction the system sees is much lower
than when the hash difficulty is increased. What this indicates
is that in the presence of a large workforce the miners
may become underutilized and if the nonce values are over
spread the communication times may rise higher than the
performance gained by dividing the work. Thus, Managers
will need to monitor the work to worker ratio and divide
the work accordingly leaving some workers idle if necessary.
Idle workers will not be consuming the same power levels as
working nodes thus this will result in energy savings across
the network. As shown in Figure 2 networks with less than 3
nodes see no benefit from the addition of managers but any
node count above 2 will benefit from additional nodes as even
the manager nodes can dynamically scale their role back and
serve as a miner when up to date creating added service to
the network.

Fig. 3. Hashes per Second with Introduction of Additional Nodes

Figure 3 displays hashes per second that can be computed
with the addition of more nodes to the network. As additional
nodes are added the computational capability of the network
increases allowing the network to compute higher numbers of

hashes as the node count increases. Note that the increase in
hashes per second does not double when the node count is
doubled; this is due to communication overhead required for
communication between nodes across the network. Next, we
will see how the data in Figure 3 contrasts with that in Figure
4 where the blocks difficulty is also considered.

Fig. 4. Block Time with Increasing Hash Difficulty

Figure 4 shows block times in seconds as the difficulty
increases with the lines indicating networks with differing
node counts. Longer time periods to process a block are not
ideal and we are aiming to achieve the lowest time possible
to complete the block as with the use of higher difficulty
levels the time period will increase exponentially. As we saw
in Figure 3 the network with 8 nodes has the highest rate
therefore produces the block in a fraction of the time required
for the single node solo mining which is represented as the
blue bars where the 8-node network parallel mining is the
yellow bars in Figure 4.

Fig. 5. Block Time Comparison with Node Failures

Figure 5 illustrates the impact of manager redundancy
during the event of a node failure and network recovery. Note
that the failure is only affecting block 7 and all other blocks
are consistent. The difficulty level for this test was set at 10
leading zeros for an acceptable hash value. When the model
running the Hazari-Mahmoud model with a single manager

TABLE II
MINING RESULTS FOR SINGLE RASPBERRY PI 4

CPU type Raspberry Pi 4 Arm Cortex-A72
Coin type Monero
Time 8 Hours
Difficulty 177,307,724,796
Hashes per Second 1 to 7
Average hashes per second 2.3
Blocks o
Bad shares 1
Invalid shares 31
Good Shares 357
Total mined 0.000001410642

node represented by the blue line in our graph experiences a
failure of the manager node parallel hashing stops and for the
remainder of the block the network will perform at solo mining
speeds. While in the case of the proposed approach the failed
manager is replaced by a supporting manager and while the
supporting manager is no longer able to contribute to mining
hashes the parallel work continues through the remainder of
the block causing only a small increase in time taken to process
the block. Thus, in the rare event of a network attack or
node failure the proposed approach provides a more robust
and effective solution while introducing marginally higher
communication costs to ensure network reliability.

1) Raspberry Pi Tests: The Raspberry Pi is a good testing
unit to consider when talking about the internet of things. If
our network is to be connected to small devices, we should
gather a baseline of what these devices are capable of in terms
of hashes per second. Tests on the Raspberry Pi platform were
done using the Raspberry Pi 4 with a Sandisk 32GB microSD
card using the Raspberry Pi OS with Desktop. Heatsinks were
added to aid in cooling the chips. The Raspberry pi was chosen
because it has a low computational capability, and our aim is to
develop a system where such devices being part of the internet
of things may contribute in a meaningful way to the overall
network. As we see in Table III the Raspberry Pi was not very
capable when mining by itself resulting in an average hash
rate of 2.3. With proper dynamic management and enough
contributors, a smart network will be capable of sustaining a
decentralized parallel mining system. One node by itself may
not be very useful but together many of them could provide a
scalable decentralized smart network to facilitate transactions
true to Satoshi’s vision of cryptocurrency [15].

Table II shows the Raspberry Pi 4’s mining capability when
mining Monero as a member of a mining pool. Note that when
mining in a pool the hash difficulty was at 177,307,724,796
which is an extremely com difficulty thus resulting in excep-
tionally low hashes per second. These kinds of difficulty levels
are common in the normal operation of a cryptocurrency but
rarely used when benchmarking as most CPU benchmark tests
aim to achieve the highest results possible without regard to
real world load. Monero is one of the most used CPU mined
cryptocurrencies and uses the RandomX hashing algorithm.

TABLE III
HASHES PER SECOND IN CLOUD ENVIRONMENT

Number of nodes Hashes per second
1 339.00
2 670.54
3 1005.47
4 1326.30
5 1659.87
6 1994.06
7 2329.66
8 2653.34

2) Scalability Of Distributed Work: As shown by increasing
the number of worker nodes the work becomes easier. There
will be a time when the number of available miners is higher
than that optimally required to compute calculations most
efficiently. Thus, managers must ensure that the nonce values
being distributed are not below a set size in comparison to the
number and capabilities of the miners. If the nonce sets are
too small the communication overhead could be higher than
any gain achieved by splitting the work resulting in a loss
of efficiency. The managers should dynamically monitor the
networks condition to ensure that miners are not used unless
needed to maintain the best energy and network efficiency.
With new nodes joining the network available for mining
if needed, the system should be dynamically scalable and
can easily support the needs of the users with performance
increasing as the number of users increases.

Table III shows the scaling of hashing capability as new
nodes are added to a cloud environment. With the addition of
nodes, the collective hashing capability of the network will
increase as will the difficulty required to solve the hashes.
This will reduce the likelihood that a 51% attack could occur
as there will be little chance of a single entity gaining such a
dominant foothold in a large network. This approach supports
both decentralization and dynamic network scaling.

V. CONCLUSION

Cryptocurrencies are a growing technology and have great
potential to leave a lasting mark on civilization. Integrating a
decentralized cryptocurrency into both the cloud and internet
of things will provide great scalability and accessibility to
the blockchain. This is achievable by integrating parallel
computing into a decentralized blockchain protocol to create
a smart network. Parallel computing has many advantages
to offer and its integration into blockchain technology will
increase the benefits of the distributed transactional system.
A truly decentralized transaction system will benefit from
parallel application over the cloud and across the internet of
things. The computational resources required to run blockchain
technology can be dramatically reduced and confirmation
times will improve with the addition of new nodes into
the network. The scalability of this system is substantially
superior compared to traditional blockchains and the proposed
approach solves several security vulnerabilities present in

traditional blockchain applications. Most notably the 51%
attack as it will be extremely difficult for a single party to
gain a majority share in the network, especially if the network
is globalized and integrated into the internet of things.

REFERENCES

[1] N. Marinoff. The Bitcoin Price Drop May Have Been Caused
By a Power Outage, Live Bitcoin News, 20-Apr-2021. [Online].
Available: https://www.livebitcoinnews.com/the-bitcoin-price-drop-may-
have-been-caused-by-a-power-outage/

[2] C. Baraniuk. Bitcoin’s global energy use ’equals Switzer-
land’. BBC News, 03-Jul-2019. [Online]. Available:
https://www.bbc.com/news/technology-48853230

[3] S. Hazari and Q. Mahmoud. Improving Transaction Speed and Scalabil-
ity of Blockchain Systems via Parallel Proof of Work. Future internet
12.8 (2020): 125131. Web.

[4] A. Hern. US seizes $1bn in bitcoin linked to Silk Road
site. The Guardian. 6 November 2020. [Online]. Available:
https://www.theguardian.com/technology/2020/nov/06/us-seizes-1bn-in-
bitcoin-linked-to-silk-road-site.

[5] I. Eyal, A. Gencer, E. Sirer, R. Renesse. Bitcoin-NG: A Scalable
Blockchain Protocol. In Proceedings of the 13th USENIX Symposium
on Networked Systems Design and Implementation (NSDI ’16), Santa
Clara, CA, USA, 16-18 March 2016; pp. 45-59.

[6] X. Boyen, C. Carr, T. Haines. Blockchain-Free Cryptocurrencies. A
Rational Framework for Truly Decentralized Fast Transactions. IACR
Cryptol. ePrint Arch. 2016, 2016, 871.

[7] S. Popov. The Tangle. White paper 1, no. 3 .2018. [Online]. Available:
http://www.descryptions.com/Iota.pdf.

[8] L. Lann. Distributed Systems-Towards a Formal Approach. IFIP
Congress. 1977, 7, 155160.

[9] C. Dework, N. Lynch, L. Stockmeyer. Consensus in the presence of
partial synchrony. Journal of the ACM, 1988-04-01, Vol.35 (2), p.288-
323.

[10] H. Hasanova, U. Baek, M. Shin, K. Cho, M. Kim. A survey on
blockchain cybersecurity vulnerabilities and possible countermeasures.
International Journal of Network Management, 29(2), e2060n/a. [On-
line]. Available: https://doi.org/10.1002/nem.2060.

[11] T. Kawakami. A Node Virtualization Scheme for Structured
Overlay Networks Based on Multiple Different Time Intervals.
Applied Sciences, 10(8596), 8596. 2020. [Online] Available:
https://doi.org/10.3390/app10238596

[12] D. Carl, C. Ewerhart, Ethereum Gas Price Statistics. University of
Zurich, Department of Economics, Working Paper No. 373, 22-
December-2020, [Online]. Available: https://ssrn.com/abstract=3754217
or http://dx.doi.org/10.2139/ssrn.3754217.

[13] Blockchain.com. Network Difficulty, Blockchain.com. [Online]. Avail-
able: https://www.blockchain.com/charts/difficulty.

[14] J. DeNio. Benchmarking Code for Parallel Mining. 2021. Available:
https://github.com/SliverOverlord/Masters Paper.

[15] S. Nakamoto. Bitcoin: A Peer-To-Peer Electronic Cash System.
Bitcoin.org. Bitcoin Project 2009-2021. [Online]. Available online:
https://bitcoin.org/bitcoin.pdf.

