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Abstract—In our research, supervised machine learning algo-
rithms were applied to analyze and compare their capability of
cancer classification. Our research used eight machine learning
algorithms: Decision Tree, Gradient Boosting, K-Nearest Neigh-
bors, Logistic Regression, Naı̈ve Bayes, Neural Network, Random
Forest, and Support Vector Machine. Machine learning models
were generated by training the algorithms on the TCGA Pan-
cancer HiSeq data set. This data set is an RNA sequencing
(RNA-seq) data set consisting of five separate cancer types
such as breast invasive carcinoma (BRCA), colon adenocar-
cinoma (COAD), kidney renal clear cell carcinoma (KIRC),
lung adenocarcinoma (LUAD), and Prostate adenocarcinoma
(PRAD). The data set was preprocessed with feature selection,
oversampling, and normalization techniques. The preprocessed
methods were implemented by selecting only the best features and
thus removing the inconsequential features, balancing the sample
size of each cancer type, and rescaling the values of numeric
attributes. Our goal was to determine which algorithm generates
a classification model that shows the best performance when
categorizing cancer types by employing the following evaluation
measures: accuracy, precision, recall, area under curve (AUC)
score, F-1 score, and processing time.

Index Terms—RNA Sequencing, TCGA Pan-cancer HiSeq
data, breast invasive carcinoma, colon adenocarcinoma, kidney
renal clear cell carcinoma, lung adenocarcinoma, and Prostate
adenocarcinoma.

I. INTRODUCTION

Cancer refers to a general term that describes diseases
caused by abnormal cell growth and proliferation coupled
with metastatic and invasive traits [1]. Most of the cancers
fall into three major categories: carcinomas, sarcomas, and
leukemia or lymphomas. Carcinoma is the most common type
of cancer that develops from epithelial cells and accounts
for 90% of cancers seen in the human body. Carcinoma
can be divided into subgroups that include adenocarcinoma,
adenosquamous carcinoma, anaplastic carcinoma, large cell
carcinoma, and squamous cell carcinoma [2]. Cancer is widely
known as one of the leading causes of death in the world.
According to statistics from the Global Cancer Observatory,
approximately 10 million people died from cancer worldwide
in 2020, indicating lung cancer (1.8 million deaths), colon
and rectum cancer (935,000 deaths), and liver cancer (830,000
deaths) as the top three major causes of cancer death [3].
Furthermore, a prediction of the World Health Organization

(WHO) indicated that the incidence of cancer may be in-
creased by over 70% within the next two decades. Hence,
investigating the genetic background of cancer and developing
cancer therapeutic methods are urgently needed in the medical
domain [1]. However, scientists have identified more than 277
types of cancer, and each of which requires a specific treatment
[1], [4]. Considering the increase of cancer cases and the
complexity of cancer diagnosis and treatment, it is of critical
importance to invent an efficient method for identification and
the early detection of cancer types.

In response to the critical need for cancer diagnosis, gene
expression analysis provides ways to enhance the performance
of the diagnosis and cancer classification. Gene expression is
defined as a highly regulated biological mechanism in which
the information encoded in a gene is converted to synthesize a
functional gene product such as a protein, transfer ribonucleic
acid (tRNA), or small nuclear RNA (snRNA) [5]. The function
and adaptability of all living cells are regulated by this process.
Hence, gene expression data tells the level of gene activity in
tissue and provides information about cellular activities [5]
[6]. This data is obtained by measuring the activation and
function of genes during the translation process. Cancers are
caused by genetic abnormalities, and gene expression data can
detect and display these abnormalities. Pattern analysis of gene
expression enhances the diagnosis and classification of risk for
many cancers [6]. Therefore, evaluating gene expression data
is an effective way to identify genes that are associated with
cancer regulation and progression [5].

The Cancer Genome Atlas (TCGA) is a landmark joint
project that collects genomics cancer data set including gene
expression, microRNA expression, and protein expression [2].
This project was conducted by the National Cancer Institute
(NCI) and the National Human Genome Research Institute
(NHGRI) [7]. TCGA’s primary aims are to create, quality
control, assemble, investigate, and interpret molecular profiles
at DNA, RNA, protein, and epigenetic levels for various kinds
of clinical tumors that represent multiple tumor types and
subtypes [8]. In 2006, TCGA began as a pilot project focused
on three cancer types: glioblastoma, lung, and ovarian. After
completing the production phase in 2009, TCGA assembled
and classified 11,000 samples across 33 cancer types in the
following decade due to the success of the initial project [7].



Those large data sets have offered a great opportunity for the
classification and detection of cancer-specific molecular alter-
ation [8]. In 2012, TCGA launched the Pan-Cancer analysis
project, which was aimed to collect consistent TCGA data sets
of various cancer types and to analyze and interpret these data
[8].

Machine learning is an excellent way to investigate gene
expression data for cancer analysis. In computer science,
machine learning is a branch of artificial intelligence that
provides systems with the ability to learn and enhance their
performance from experience. Machine learning enables the
systems to extract insights or useful information from data and
make decisions without any external help [9]. To intelligently
investigate data and to improve real-world applications, such
as healthcare and COVID-19, machine learning algorithms
are the key [10]. Recently in the artificial intelligence field,
machine learning methods have developed clinical decision
support systems to analyze gene expression, which has made
advances in the medical prognosis for cancer. Regarding
cancer research, studies have reported the high accuracy of
machine learning algorithms in predicting cancer survival [6].
Machine learning methods are mainly categorized into three
types, and supervised learning is one paradigm of the methods.
Supervised Learning is used for interpreting the input-output
relationship information of a system based on a given set of
training samples that contain both independent values (inputs)
and a dependent value, or a label of input (an output). The
primary objective of supervised learning is to generate a model
that learns the connection between the input and the output
and can predict the output given unseen inputs [11]. Analyz-
ing gene expression data by machine learning methods may
contribute to the development of effective cancer identification
and classification strategies for early cancer treatment.

Thus, in this paper we are investigating the TCGA Pan-
cancer HiSeq data set that consists of five separate cancer types
such as breast invasive carcinoma, colon adenocarcinoma,
kidney renal clear cell carcinoma, lung adenocarcinoma, and
Prostate adenocarcinoma. Instead of only looking at one cancer
type at a time, in this investigation we are looking at all five
cancer types at once and train a classifier that can correctly
identify unknown gene expression data. We will be applying
a series of different combinations of preprocessing methods
and machine learning algorithms in order to identify the best
classification model.

The remainder of the article is structured as follows. The
next section (Section II) presents the related work that is based
on the pan-cancer project data set. Then, the methods used
are discussed in detail in Section III, specifically the data
set, data preprocessing methods, and proposed classification
algorithms are outlined. Section IV describes the experiments
and the results obtained for the investigation of the data set.
Finally, Section V provides conclusions and directions for
further research.

II. RELATED WORK

The main aim of the ICGC/TCGA pan-cancer project was
to combine data from the separate diseases into one all
encompasing data set that consists of multiple tumor types
[12]. The goal was to find the commonalities and differences
across various tumor types by analyzing and interpreting the
data. Up to now there have been a few machine learning
and deep learning methods, which have been applied to the
analysis of pan-cancer data. We will further outline a few of
the recent studies that are related to the pan-cancer analysis.

One approach used machine learning to build a reliable
classification model that recognizes 33 types of cancer patients
[13]. Five machine learning algorithms were applied (decision
tree, k-nearest neighbor, linear support vector machine, poly-
nomial support vector machine, and artificial neural network)
in order to analyze the pan-cancer data. The results reported
show that linear SVM is the best classifier with an accuracy
of 95.8%.

In [14], a new method for the classification of multiple
tumor types is proposed. The method uses a relaxed Lasso
selection feature subsets and an improved support vector
machine (GenSVM) classifier. GenSVM is compared with the
three classifiers, namely KNN, L1logreg, L2logreg, on a four
multi-label data sets. The results from the experiment showed
that GenSVM performs better in terms of generality, flexibility,
and classification accuracy.

Another approach looked at the pan-cancer atlas to rec-
ognize 9,096 TCGA tumor samples representing 31 tumor
types [15]. The researchers applied k-nearest neighbors (KNN)
to classify the 31 different tumor types, and additionally
employed a genetic algorithm to improve the accuracy of the
KNN classifier. This approach achieved an accuracy of around
90% for all 31 tumor types.

Deep learning has been applied to many medical classi-
fication problems in order to identify cancer types. Another
solution used a stacked auto-encoder to extract high-level
features from the expression values in [16]. Afterwards, the
features were fed into a single layer artificial neural network to
classify whether a tumor is present or not. The results obtained
was a 94% accuracy. However, a shortcoming of this work is
that the authors only investigated breast cancer given the more
complicated network structure and parameter settings needed
for the neural network approach and also to save processing
time and cost.

In [17], an optimized deep learning approach was introduced
based on binary particle swarm optimization with decision tree
(BPSO-DT) as well as using a Convolutional Neural network
(CNN) to classify different types of tumor. The authors ana-
lyzed five different tumor types (KIRC, BRCA, LUSC, LUAD,
and UCEC). The experiments conducted showed an accuracy
of 96.6% was achieved with this approach.

A new method was designed in [18] which used the
high dimensional RNA-Seq data and converted it into 2-D
images and afterwards applied a CNN for the classification
of the 33 tumor types. This approach achieved an accuracy



of 95.59% for all tumor types. However, as was pointed out
by the authors, their proposed approach did not achieve good
classification performance on the tumor data sets with small
samples and thus runs into the overfitting problem.

III. METHODS

This section introduces the techniques used for this in-
vestigation namely feature selection, oversampling technique,
normalization, and the machine learning techniques applied
(neural networks, decision trees, support vector machine, gaus-
sian naı̈ve bayes, random forest, logistic regression, K-nearest
neighbor, and gradient boosting).

A. Data Set

The data set investigated in our research is a TCGA Pan-
cancer HiSeq data set. This data set is composed of RNA
sequencing values from samples that correspond to five cancer
types: 300 samples of breast invasive carcinoma (BRCA), 78
samples of colon adenocarcinoma (COAD), 146 samples of
kidney renal clear cell carcinoma (KIRC), 141 samples of lung
adenocarcinoma (LUAD), and 136 samples of PRAD (Prostate
adenocarcinoma). These cancer categories were encoded nu-
merically: 0 = BRCA, 1 = COAD, 2 = KIRC, 3 = LUAD, 4 =
PRAD. The data set contains 801 samples and 20,531 numeric
attributes.

B. Oversampling (SMOTE)

Since the TCGA Pan-cancer HiSeq data set is imbalanced,
Synthetic Minority Oversampling Technique (SMOTE) [19]
was applied to balance it. SMOTE is an approach that in-
creases the amounts of samples for minority classes. Its effect
is to identify similar but more specific regions in the feature
space as the decision region for the minority class [19]. In our
research, the sample number of all cancer types was adjusted
to 300, which increased the whole sample size from 801 to
1,500.

C. Feature Selection

Feature selection is a process of keeping relevant features
and removing irrelevant or redundant ones to gain a subset of
features that more accurately describes a given problem [13].
Univariate feature selection is one of the extraction techniques
which provides a ranking of features determined by setting a
cutoff threshold or limits a certain number of attributes to
retain [13]. The balanced data set went through univariate
feature selection that discards all features but not a certain
percentage of top features that have a strong relationship with
cancer types. To determine which percentile of top attributes
works the best for the classification algorithms, six different
parameters were used and compared for feature selection: top
100% (20,531 features), 50% (10,265 features), 25% (5,133
features), 10% (2,053 features), 5% (1,027 features), 1% (206
features), and 0.1% (21 features). There are in general two
reasons why feature selection is used:

1) Reducing the number of features reduces overfitting and
improves the generalization of models.

2) To gain a better understanding of the features and their
relationship to the response variables.

Univariate feature selection examines each feature individu-
ally to determine the strength of the relationship of the feature
with the response (dependent) variable.

D. Normalization

Data normalization is known as an essential preprocessing
operation which transforms or rescale numeric attributes into
a common range of values to minimize the biased contribution
of greater numeric features in discriminating patterns of a
data set. Normalization deals with the presence of dominant
features and outliers, two main components that hamper the
learning process of machine learning algorithms [14]. After
oversampling and feature selection, normalization was imple-
mented to our RNA-seq data set so that it rescaled the values
in all numeric attributes of the data set to values between 0
to 1. After oversampling and feature selection, normalization
was implemented for our RNA-seq data set so that it rescaled
the values for all numeric attributes of the data set to values
ranging between 0 to 1.

E. Neural Network

In computing, Artificial neural networks (neural networks)
are created by mimicking the human brain. Deep neural
networks are a type of neural network that contain three main
components. The input layer, multiple hidden layers, and an
output layer [20]. The input layer is the first step in the process,
and its number of neurons is determined by the number of
samples in the data set. Signals are then sent to the hidden
layers, where information is broken down. Determining the
size of the hidden layers is largely experimental [21]. Finally,
the output layer determines the classification. Therefore, our
data set, having 5 different types of cancer to classify samples
to, results in an output layer with 5 neurons.

F. Decision Tree

The decision tree classifier is a relatively simple classifier.
The name is derived from how the tree data structure is often
used, that is, to subdivide data from the root node through
yes-no like decisions until a leaf node is reached. For our
purposes, the leaf node is the type of classification. Decision
trees are popular because it is easy to view how the algorithm
determines the classification, and its wide variety of appli-
cations [22]. Information gain was determined using entropy,
meaning that children were created based upon features that
lowered unpredictability. Additionally, the Gini impurity was
used to measure the quality of a split.

G. Support Vector Machine

A support vector machine (SVM) is used solely in super-
vised learning. The separating hyperplane, maximum-margin
hyperplane, soft margin, and kernel function are four key
functions that help create an SVM [23]. Essentially, samples
are plotted, resulting in clusters, the separating hyperplane
serves as a divider and any points on either side of the



hyperplane would be classified according to which side they
are on. Expanding on this divider is the maximum-margin
hyperplane, which alters the hyperplane, so it is, on average,
the furthest from the sample points of the different classes.
Meanwhile, the soft margin allows points that end up on
the wrong side of the divider, within a certain distance, to
be correctly classified. Finally, kernel functions can introduce
dimensionality to the data and hyperplane in the case that a
single hyperplane would not work with.

H. Gaussian Naı̈ve Bayes

Naı̈ve Bayes classifiers are unique because they assume
no relation between features, which is seldom the case in
experiments where data is gathered. Success of the algorithm
is surprising, and its success may be a result of how features
either frequently support a classification or cancel the other
features out [24]. The Gaussian Naı̈ve Bayes classifier is
an alteration of the Naı̈ve Bayes that maintains its core
principle, but it finds the mean and standard deviation of
the features of the classification types. Therefore, if a sample
has an approximately same mean and standard deviation as a
classification type, then that sample is most likely of that type.

I. Random Forest

At its core, a random forest is a collection of decision trees.
However, unlike decision trees, the trees in random forests are
generated from randomly picking data from the data set and
creating a tree based upon that specific data (not the whole
data set as a decision tree would). After the forest is done
being grown, each tree casts a vote for what classification type
it thinks the sample is. The sample is then classified as the
classification type with most votes. Overfitting occurs when
the algorithm learns a data set to the point where it is unable
to generalize to other, similar, data. One benefit of the random
forest classifier is that it is immune to overfitting because of the
law of large numbers [25]. The number of trees that populate
the forest can be altered as a parameter, for our experiment
we used the default value of 100 trees.

J. Logistic Regression

Despite its name containing the word regression, logistic
regression is a binary classifier. For the logistic regression
algorithm to be compatible with multi-class classification, one-
vs-all classification must be applied. Essentially, one-vs-all
creates separate N number of binary classifiers corresponding
to N types of classes. The algorithm operates using the logistic
function (also called the sigmoid function), which is an s-
shaped curve containing a non-negative derivative at every
point. Additionally, the logistic function is defined for numbers
from 0 to 1 making it suitable to characterize probabilities
[26]. When classifying, the sigmoid function can therefore
determine which class a sample is because the samples class
would have a high probability compared to other classes with
a low probability based upon the same features.

K. K-Nearest Neighbor

K-nearest-neighbor (KNN) classification is often used in
unsupervised learning as the output variables of a data set are
not provided, and the clustering component of the algorithm
works well with no output variables. KNN can also be utilized
as a supervised learning model. The KNN algorithm is also
popular because of its rather simplistic and intuitive design.
In a supervised learning situation, the KNN algorithm creates
a model by comparing a new sample with its k-number
of nearest samples, hence the name k-nearest neighbor [27]
because the neighbors of a sample are crucial to determine
its classification. Therefore, its is important to restrain the
number of neighbors used to determine a classification to a
fixed amount as those neighbors closest would likely lead to
the correct result. For our experiments we set the n neighbors
parameter to the default value of 5.

L. Gradient Boosting

The gradient boosting decision tree (GBDT) classifier [28]
is like the random forest classifier because it uses a simpler
classifier; in our experiments we utilize the decision tree
classifier for both algorithms, and then it alters or expands the
simpler classifier. However, unlike the random forest classifier,
the GBDT does not create a forest of trees. The GBDT only
instantiates a single tree, it then modifies the tree with every
training iteration. Improving and correcting the mistakes of
the previous tree. There are several important parameters that
the GBDT can take in such as n estimators, max depth,
and learning rate. The n estimators parameter controls
how many iterations of algorithm will be ran when creating
a model. The max depth limits the number of nodes that
will be in the tree. These two parameters’ values vary with
separate experiments. While the learning rate determines how
much the current tree will impact the next iterations tree. For
all experiments the default value of 0.1 is used.

IV. EXPERIMENTS AND RESULTS

The experiments were run as follows. First, the original data
set without oversampling and feature selection was used and
all different classifiers were applied. This is then compared to
the data set with feature selection and oversampling applied.
Afterwards, different percentages of features selected are ex-
perimented with. For all experiments five-fold cross-validation
was used.

A. Experiment 1: Original Data Set versus Oversampled Data
Set

Table I shows the results of the original data set used without
oversampling and feature selection. In order to compare the
results, Table II shows the results obtained by using the data
set after oversampling has been applied. As can be clearly seen
from these two tables, oversampling has a beneficial effect on
the improvement of the classification results. All results for
accuracy, AUC, precision, recall, and F-1 score are improved.
The largest differences in terms of accuracy are achieved by
the Naı̈ve Bayes classifier with values of 0.8027465668 versus



Fig. 1. Overall Results of the 5% Feature Selection Run

0.9440000000. The same goes for the AUC score, where Naı̈ve
Bayes achieved 0.9649888889 versus 0.8353669495.

B. Experiment 2: Various Percentages of Features Used

This set of experiments were conducted in order to find
the best number as well as the most important features of the
data set for the classification. Tables III-VIII show the results
of 50%, 25%, 10%, 5%, 1%, and 0.1%, respectively. The
tables list the accuracy, AUC, precision, recall, and F-1 score
applying all classifiers. As can be seen, the best classification
results are achieved when 5% of the features are used for
the classification task. Figure 1 shows the overall results in
a graphical format for the results obtained using 5% of the
features.

C. Experiment 3: Comparing Different ML Classifiers

In this section, we evaluated the different ML classifiers.
We could have listed all the AUC ROC curves, however, we
would like to show two particular examples to highlight the
differences between K-Nearest Neighbor and Decision Tree.
The ROC plots for K-Nearest Neighbor and Decision Tree
are shown in Figure 2 and 3, respectively. We can observe
a perfect ROC curve for K-Nearest Neighbor and an almost
perfect ROC curve for Decision Tree.

Table IX shows the training times of the different classifiers.
As can be seen from the table, the most time-consuming
classifier is Gradient Boosting with 1214.48 seconds, whereas
the fastest algorithm is K-Nearest Neighbor with a training
time of 1.06 seconds.

V. CONCLUSIONS

In this paper, we applied supervised machine learning
algorithms to analyze and compare their capability applied
to cancer classification. In particular, the TCGA Pan-cancer
HiSeq data set was investigated. The RNA sequencing data
set consists of five separate cancer types such as breast
invasive carcinoma, colon adenocarcinoma, kidney renal clear
cell carcinoma, lung adenocarcinoma, and Prostate adenocar-
cinoma. The data set was preprocessed with feature selection,
oversampling, and normalization techniques. The goal was to

Fig. 2. ROC Curve of K-Nearest Neighbor

Fig. 3. ROC Curve of Decision Tree

determine which algorithm generates a classification model
that shows the best performance when categorizing cancer
types using accuracy, precision, recall, AUC score, F-1 score,
and processing time as evaluation measures.

The data set was investigated by applying eight classifiers
with feature selection, including the top 100% (original data),
50%, 25%, 10%, 5%, 1%, and 0.1% of features. The results
demonstrated that most of the classifiers achieved their highest
accuracy using the top 5% (= 1,027) features. All classification
models achieved nearly 99% or 100% accuracy and none of
their scores went below 98%.

Among the eight models, the K-Nearest Neighbor classifier
is the best algorithm for predicting cancer types due to its
notably higher accuracy and time efficiency. It is noteworthy
that K-Nearest Neighbor, which is considered a simple and
most straightforward classifier, achieved as high as or higher
accuracy than the other more sophisticated algorithms and



TABLE I
DATA - OVERSAMPLING AND NO FEATURE SELECTION

Classifier Accuracy AUC score Precision Recall F-1 score
Neural Network 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000
Logistic Regression 0.9980000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000
Decision Tree 0.9866666667 0.9916666667 0.9900000000 0.9900000000 0.9900000000
Naı̈ve Bayes 0.9440000000 0.9649888889 0.9500000000 0.9400000000 0.9400000000
Support Vector Machine 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000
Random Forest 0.9993333333 1.0000000000 1.0000000000 1.0000000000 1.0000000000
K-Nearest Neighbors 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000
Gradient Boosting 0.9926666667 0.9990777778 0.9900000000 0.9900000000 0.9900000000

TABLE II
ORIGINAL DATA - NO OVERSAMPLING AND NO FEATURE SELECTION

Classifier Accuracy AUC score Precision Recall F-1 score
Neural Network 0.9975031211 0.9999776786 1.0000000000 1.0000000000 1.0000000000
Logistic Regression 0.9513108614 0.9997723214 0.9800000000 0.9200000000 0.9400000000
Decision Tree 0.9712858926 0.9807700465 0.9700000000 0.9700000000 0.9700000000
Naı̈ve Bayes 0.8027465668 0.8353669495 0.8400000000 0.7400000000 0.7600000000
Support Vector Machine 0.9962546816 0.9999776786 1.0000000000 0.9900000000 1.0000000000
Random Forest 0.9975031211 1.0000000000 1.0000000000 1.0000000000 1.0000000000
K-Nearest Neighbors 0.9975031211 0.9999715209 1.0000000000 1.0000000000 1.0000000000
Gradient Boosting 0.9737827715 0.9989271307 0.9800000000 0.9700000000 0.9700000000

TABLE III
FEATURE SELECTION: 50% WITH SMOTE

Classifier Accuracy AUC score Precision Recall F-1 score
Neural Network 0.9993333333 0.9999944444 1.0000000000 1.0000000000 1.0000000000
Logistic Regression 0.9993333333 1.0000000000 1.0000000000 1.0000000000 1.0000000000
Decision Tree 0.9840000000 0.9900000000 0.9800000000 0.9800000000 0.9800000000
Naı̈ve Bayes 0.9773333333 0.9861611111 0.9800000000 0.9800000000 0.9800000000
Support Vector Machine 0.9993333333 0.9999972222 1.0000000000 1.0000000000 1.0000000000
Random Forest 0.9986666667 1.0000000000 1.0000000000 1.0000000000 1.0000000000
K-Nearest Neighbors 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000
Gradient Boosting 0.9940000000 0.9999777778 0.9900000000 0.9900000000 0.9900000000

TABLE IV
FEATURE SELECTION: 25% WITH SMOTE

Classifier Accuracy AUC score Precision Recall F-1 score
Neural Network 0.9993333333 1.0000000000 1.0000000000 1.0000000000 1.0000000000
Logistic Regression 0.9986666667 1.0000000000 1.0000000000 1.0000000000 1.0000000000
Decision Tree 0.9880000000 0.9925000000 0.9900000000 0.9900000000 0.9900000000
Naı̈ve Bayes 0.9846666667 0.9907430556 0.9800000000 0.9800000000 0.9800000000
Support Vector Machine 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000
Random Forest 0.9986666667 1.0000000000 1.0000000000 1.0000000000 1.0000000000
K-Nearest Neighbors 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000
Gradient Boosting 0.9913333333 0.9990722222 0.9900000000 0.9900000000 0.9900000000

TABLE V
FEATURE SELECTION: 10% WITH SMOTE

Classifier Accuracy AUC score Precision Recall F-1 score
Neural Network 1.0000000000 1.0000000000 0.9993000000 0.9993000000 0.9993000000
Logistic Regression 0.9993333333 1.0000000000 0.9993000000 0.9993000000 0.9993000000
Decision Tree 0.9860000000 0.9912500000 0.9887000000 0.9887000000 0.9887000000
Naı̈ve Bayes 0.9946666667 0.9966638889 0.9915000000 0.9913000000 0.9914000000
Support Vector Machine 0.9993333333 1.0000000000 0.9993000000 0.9993000000 0.9993000000
Random Forest 0.9980000000 0.9999972222 0.9987000000 0.9987000000 0.9987000000
K-Nearest Neighbors 0.9993333333 1.0000000000 0.9993000000 0.9993000000 0.9993000000
Gradient Boosting 0.9913333333 0.9945833333 0.9921000000 0.9920000000 0.9920000000



TABLE VI
FEATURE SELECTION: 5% WITH SMOTE

Classifier Accuracy AUC score Precision Recall F-1 score
Neural Network 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000
Logistic Regression 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000
Decision Tree 0.9860000000 0.9912500000 0.9860000000 0.9860000000 0.9860000000
Naı̈ve Bayes 0.9953000000 0.9971000000 0.9954000000 0.9953000000 0.9953000000
Support Vector Machine 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000
Random Forest 0.9993000000 1.0000000000 0.9993000000 0.9993000000 0.9993000000
K-Nearest Neighbors 0.9993000000 1.0000000000 0.9993000000 0.9993000000 0.9993000000
Gradient Boosting 0.9920000000 0.9999000000 0.9921000000 0.9920000000 0.9920000000

TABLE VII
FEATURE SELECTION: 1% WITH SMOTE

Classifier Accuracy AUC score Precision Recall F-1 score
Neural Network 0.9993000000 0.9999000000 0.9993000000 0.9993000000 0.9993000000
Logistic Regression 0.9993000000 0.9999000000 0.9993000000 0.9993000000 0.9993000000
Decision Tree 0.9807000000 0.9879000000 0.9808000000 0.9807000000 0.9807000000
Naı̈ve Bayes 0.9987000000 0.9992000000 0.9987000000 0.9987000000 0.9987000000
Support Vector Machine 0.9993000000 1.0000000000 0.9993000000 0.9993000000 0.9993000000
Random Forest 0.9966000000 0.9999000000 0.9967000000 0.9967000000 0.9967000000
K-Nearest Neighbors 0.9993000000 0.9996000000 0.9993000000 0.9993000000 0.9993000000
Gradient Boosting 0.9906000000 0.9999000000 0.9907000000 0.9907000000 0.9907000000

TABLE VIII
FEATURE SELECTION: 0.1% WITH SMOTE

Classifier Accuracy AUC score Precision Recall F-1 score
Neural Network 0.9927000000 0.9997000000 0.9927000000 0.9927000000 0.9927000000
Logistic Regression 0.9867000000 0.9999000000 0.9868000000 0.9867000000 0.9866000000
Decision Tree 0.9867000000 0.9917000000 0.9866000000 0.9867000000 0.9866000000
Naı̈ve Bayes 0.9880000000 0.9978000000 0.9884000000 0.9880000000 0.9881000000
Support Vector Machine 0.9947000000 0.9999000000 0.9947000000 0.9947000000 0.9947000000
Random Forest 0.9920000000 0.9999000000 0.9921000000 0.9920000000 0.9920000000
K-Nearest Neighbors 0.9927000000 0.9970000000 0.9927000000 0.9927000000 0.9927000000
Gradient Boosting 0.9900000000 0.9992000000 0.9900000000 0.9900000000 0.9900000000

TABLE IX
TRAINING TIME IN SECONDS

Classifier Time
Neural Network 79.05057096
Logistic Regression 6.98290682
Decision Tree 8.83977962
Naı̈ve Bayes 1.47989392
Support Vector Machine 17.65491033
Random Forest 9.86569095
K-Nearest Neighbors 1.05722189
Gradient Boosting 1214.48126125

produced the second fastest model.
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