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Abstract—Breast cancer is the most common cancer in women
worldwide. Prevention of breast cancer through risk factors
reduction is a significant concern to decrease its impact on the
population. Attaining or detecting significant information in the
form of rules is the key to prevent breast cancer. Our objective is
to find hidden but important knowledge of the form of rules from
the risk factors data set of breast cancer. Mining rules is one of
the vital tasks of data mining as rules provide concise statement
of potentially important information that is easily understood by
end users. In this paper, we use association rule mining, a data
mining technique to attain information in the form of rules from
breast cancer risk factors data that could be useful to initiate
prevention strategies. We discovered rules of both breast cancer
and non-breast cancer patients so that we can understand and
compare the characteristics of both breast cancer and non-breast
cancer individuals. The experimental results show that generated
or mined rules hold the highest confidence level.

Index Terms—data mining, association rule mining, breast
cancer, risk factors, rules generation.

I. INTRODUCTION

Cancer has become one of the most devastating disease
worldwide, with more than 10 million new cases every year,
according to World Health Organization (WHO) [1]. The
causes and types of cancer vary in different geographical
regions, however, nearly every family in the world is touched
by cancer. The disease burden is enormous, not only for
affected individuals but also for their family and society. Breast
cancer is the most common cancer in women worldwide, with
nearly 1.7 million new cases diagnosed in 2012 [1]. Breast
cancer makes up 25 percent of all new cancer diagnoses in
women globally, according to the American Cancer Society
(ACS) [1]. Prevention of major types of cancer through a
quantified assessment of risk is a major concern in order to
decrease its impact on our society. Identifying risk factors of
breast cancer is important whereby physicians can inform the
patients about the potential cancer risks from the risk factors
and suggest preventive measures. It is also more important to
extract important knowledge from these available risk factors
in the form of rules. By using these rules medical professionals
or other health related organizations can develop strategies to
identify and prevent its impact in the early stage.

Data mining is often referred to as knowledge discovery in
databases and describes a process of nontrivial extraction of

implicit, previously unknown and potentially useful informa-
tion from a large volume of data [2]. The mined information is
also referred to as knowledge in the form of rules, constraints
and regularities. In data mining, rule mining is one of the
vital tasks since rules provide concise statements of potentially
important information that can be easily understood by end
users [3].

The idea of association rules originated from the market
basket analysis where a rule is sought to be like “When a
customer buys a set of products what is the probability that
he or she buys another product? Mathematically, an association
rule is defined as A ⇒ B where A (antecedent) and B
(consequent) are logical predicates constructed by Boolean
predicates. A logical predicate in an association rule consists
of one or more Boolean conditions and they are connected by
the logical AND (∧) operator. In a transactional data set (e.g.,
sale database of a supermarket), an association rule appears
as (item = milk) ∧ (item = bread) ⇒ (item = butter),
which means when a customer buys milk and bread it is most
likely that he or she also buys butter. The likelihood of an
association rule is measured by many values, e.g., support,
confidence, lift, and so on.

Association rule mining [4] has been introduced in 1993,
and since then it has attracted considerable attention partic-
ularly for market basket analysis, where customers’ buying
patterns are discovered from retail sales transactions.

Discovery of association rules is an important component
of data mining. Association Rule Mining (ARM) has been
widely used by the retail industry under the name “market-
basket analysis”. However, the concept of association rules is
general and has wide applicability also in the medical domain
[5] [6] [7] [8]. In this paper, we demonstrate its applicability to
a breast cancer risk factors data set. We investigated to discover
hidden but significant rules that could be useful not only for
medical professionals but also for health organizations.

This paper is comprised of three important sections follow-
ing the introduction. The related work is discussed in Section
II. The preliminaries including data description, data pre-
processing, and the problem statement are described in Section
III. The analytical workflow are discussed in Section IV. In
this section, the binary logit model and association rule mining
is discussed. In Section V, we show our experiments and



results. The outputs obtained from the logit model is discussed
and shown. Also, the rule generation using the association
rule mining technique is also shown in this section. Moreover,
important rules along with their interpretation are shown in
this section. Section VI is our discussion section. Section VII
is the summary section of this paper where we conclude our
paper and suggest possible future research directions.

II. RELATED WORK

Researchers have developed different models for breast
cancer risk prediction and association between risk factors [9]
[10] [11] [12]. In [9], authors applied statistical methods to
show a positive association between Hormone Replacement
Therapy (HRT) and breast cancer risk, although this rela-
tionship varies according to race/ethnicity, BMI (Body Mass
Index), and breast density. The Gali model is used to estimate
the number of expected breast cancers for white females
who are examined annually [10]. In [11], the authors used
commonly identified risk factors such as race/ethnicity, breast
density, BMI, and use of hormone therapy, type of menopause,
and previous mammographic results to improve the model. In
[12], the Breast cancer risk score is determined using a data
mining approach called k-nearest-neighbor (KNN) to improve
readability for physician and patients. In addition, authors [12]
tried to get higher risk detection performances and impact
levels of each risk factor.

Association rule mining has been used in the medical
domain to find useful information from the data. In [5], authors
used the ARM technique for generating the rules for heart
disease patients. Based on the rules they discovered the factors
which cause heart problems in men and women. In [6], the
authors implemented the ARM based concept for finding co-
occurrences of diseases carried by a patient using a health-
care repository. The authors extracted data from a patients’
healthcare database and from that they generated association
rules. Class association rule mining has also been used in
the literature to discover the characteristics features [13]. A
class association rule set is a subset of association rules with
the specified classes as their consequents [14]. In traditional
association rule mining, if the support value is kept too low, the
class association rule mining will generate overfitting rules for
frequent or majority classes; while keeping support value high
will not generate sufficient rules for infrequent or minority
classes. In class association rule mining this is not the case
since mining is done according to the class, the algorithm is
not influenced by the unequal distribution between the classes
(imbalanced class).

In this paper, we used a risk factors data set from the Breast
Cancer Surveillance Consortium (BCSC) [16] to examine sig-
nificant rules of breast cancer and non-breast cancer patients.
Rules of breast cancer patients can be useful for physicians
to make informed decision as they have to inform patients
about risk factors and alert patients about the potential risks
of developing breast cancer (if any). This way, a prevention
program or process can be initiated in the early stage of disease
progression.

III. PRELIMINARIES

A. Data Description

The data set includes information from 6, 318, 638 mam-
mography examinations obtained from the Breast Cancer
Surveillance Consortium (BCSC) database collected from Jan-
uary 2000 to December 2009 [16]. Data for this study was
obtained from the BCSC Data Resource and more information
is available at http://www.bcsc-research.org.

B. Data Pre-processing

The data is aggregated such that the total number of
instances or records is 1, 144, 565, with 13 attributes or
columns. The data set also contains missing or unknown values
denoted by 9. To build a reliable model, we discarded the
records containing at least one missing or unknown value. We
also removed the attribute year that represents the calendar
year of the observation. After discarding these records and
one attribute, there are 219, 524 available records with 12
attributes. In the data set, there is an attribute named count,
representing the number of records that have the combination
of variable-values shown in the row. For instance, the value of
the count column for the particular row is 12. It indicates that
there were 12 similar records; the same as that particular row
in the original data. For that reason, we created the number of
rows or records the same as the count value in the original data
set, and discarded the count column after that. Finally, there
are a total of 1, 015, 583 records with 11 attributes for building
the model. Among 1, 015, 583 records, 60, 800 individuals
have prior breast cancer, and 954, 783 are non-breast cancer
individuals. Among the 11 attributes, “prior breast cancer”
values yes or no is considered as response or class variable
and the remaining 10 attributes are considered as explanatory
or predictors or independent variables. The distribution of all
features are shown in Table I through Table X. Bar plots of the
age group, age first birth, BMI group, and breast cancer history
are shown in Fig. 1, Fig. 2, Fig. 3, and Fig. 4 respectively.

TABLE I
DISTRIBUTION OF RACE/ETHNICITY

Race/Ethnicity Count
Non-Hispanic-White 902736
Asian or Pacific Islander 39139
Hispanic 35451
Other or Mixed 20972
Non-Hispanic-Black 14389
Native American 2896

TABLE II
DISTRIBUTION OF HORMONE REPLACEMENT THERAPY (HRT)

HRT Count
No 849225
Yes 166358



TABLE III
DISTRIBUTION OF AGE GROUP

Age group range Count
age 55 59 168659
age 50 54 168158
age 45 49 146665
age 60 64 127459
age 40 44 115237
age 65 69 93919
age 70 74 72315
age 75 79 53983
age 80 84 29750
age 35 39 21841
age greater equal 85 12557
age 30 34 4113
age 18 29 927

TABLE IV
DISTRIBUTION OF MENOPAUSAL STATUS

Menopaus Count
Post menopausal 687566
Pre or peri menopausal 292699
Surgical menopause 35318

TABLE V
DISTRIBUTION OF BODY MASS INDEX (BMI)

BMI range Count
10-to-lessThan 25 430102
25-to-lessThan 30 310555
30-to-lessThan 35 161785
35-or-above+ 113141

TABLE VI
DISTRIBUTION OF BI-RADS BREAST DENSITY

BIRADS breast density Count
Scattered fibroglandular densities 429488
Heterogeneously dense 414732
Almost entirely fat 90005
Extremly dense 81358

TABLE VII
DISTRIBUTION OF AGE FIRST BIRTH

Age first birth Count
Age 20 24 331615
Age 25 29 216877
Nulliparous 166180
Age less 20 157723
Age greater equal 30 143188

TABLE VIII
DISTRIBUTION OF FIRST DEGREE RELATIVE

First degree relative Count
No 824472
Yes 191111

TABLE IX
DISTRIBUTION OF PREVIOUS BREAST BIOPSY

biopsy Count
No 724364
Yes 291219

TABLE X
DISTRIBUTION OF PRIOR BREAST CANCER DIAGNOSIS

breast cancer history Count
No 954783
Yes 60800

Fig. 1. Bar graph of age group for BCSC risk factors data.

Fig. 2. Bar graph of age first birth for BCSC risk factors data.



Fig. 3. Bar graph of BMI group for BCSC risk factors data.

Fig. 4. Bar graph of prior breast cancer for BCSC risk factors data.

C. Conversion of Data Set into Transaction-like Database

For association and class rule mining, the data set has been
converted into transactions. For instance, for feature such as
race or ethnicity there were a total of six values namely non-
Hispanic white, non-Hispanic black, Asian, native American,
Hispanic, and mixed/other; for that six columns have been
created accordingly with values Yes or No. For example, if an
individual is a Native American, then Yes or 1 would be in
the corresponding column and the remainder would be No or
0. This way, a total of 46 columns have been created. So, in
total there were 1015583 records and 46 items or columns.

D. Problem Statement

Let, P = {p1,p2,p3,...,pn} be the set of n patients and D
= {d1,d2,d3,...,dm} be the characteristics of patients, where

m is the number of attributes of the patients. We define,
C = {c1,c2} be the class information or the breast cancer
history (yes or no) of patients. In this paper, we are interested
in finding the relationships among breast cancer risk factors.
More specifically, we are interested to find the characteristics
or rules in terms of risk factors of both the breast cancer
and non-breast cancer individuals (i.e. {d1, d3, d6} ⇒ c1 and
{d2, d5, d7} ⇒ c2).

IV. ANALYTICAL WORKFLOW

In this section, we provide an overview of our framework.
First, we used the logit model on the Breast Cancer Surveil-
lance Consortium (BCSC) data set to identify appropriate
factors that may affect the likelihood of breast cancer. After
that we applied association rule mining and class association
rule mining on these risk factors to find significant rules of
both non-breast cancer and breast cancer patients.

A. Logit Model

In the current study, the dependent attribute of breast cancer
(Yes or 1) or no breast cancer (No or 0) is dichotomous and
thus represented as a binary variable. The binary logit model
is extensively used in breast cancer investigations where the
response variable is binary [15]. The model takes the natural
logarithm of the likelihood ratio such that the dependent
variable is 1 (breast cancer) as opposed to 0 (no breast cancer).
Let, p1 and p0 represents the probabilities of the response
to variable categories breast cancer and no breast cancer,
respectively. The binary logit model is given as:

Y = log
[p0
p1

]
= α+ βiXi (1)

where Y is the Binary response or class variable; α is
the intercept to be calculated; βi is the estimated vector of
parameters, and Xi is the vector of independent variables.

In Equation (1), the maximum likelihood estimation tech-
nique is used to estimate the parameters. The unit increase in
the independent variables Xi, while keeping all the remaining
factors constant, will result in the increase of the likelihood
ratio by exp(βi). This states that the relative magnitude by
which the response outcome (breast cancer) will increase
or decrease, while considering a one-unit increase in the
explanatory variable. The probability of breast cancer (p1) is
given by:

p1 =
exp(α+ βiXi)

1 + exp(α+ βiXi))
(2)

Similarly, the probability of no breast cancer (p0) is given
by:

p0 =
1

1 + exp(α+ βiXi)
(3)

We used the logit model to identify and select appropriate
factors that may affect the likelihood of breast cancer.



B. Association Rule Mining

Association Rule Mining (ARM) is one of the key tech-
niques to discover and extract useful information from a large
data set. Mining association rules [2] can formally be defined
as: Let I = {i1, i2, i3, ..., in}, be a set of n binary attributes
called items, and Let, D = {t1, t2, t3, ..., tm} be a set of
transactions called the database. Each transaction in D has
a unique transaction ID and contains a subset of items in
I . A rule is defined as an implication of the form X ⇒ Y
where X,Y ⊆ I . The sets of items or item sets X and Y
are called antecedent (left-hand-side or LHS) and consequent
(right-hand-side or RHS) of the rule, respectively. Often rules
are restricted to only a single item in the consequent.

Association rules are rules which surpass a user-specified
minimum support and minimum confidence threshold. The
support supp (X) of an item set X is defined as the proportion
of transactions in the data set, which contain the item set and
confidence of a rule as defined as:

conf(X → Y ) =
supp(X ∪ Y )

supp(X)
(4)

Therefore, an association rule X → Y will satisfy supp(X∪
Y ) ≥ φ and conf(X → Y ) ≥ δ, which are the minimum
support and minimum confidence, respectively. Minimum con-
fidence can be interpreted as the threshold on the estimated
conditional probability, the probability of finding the RHS
of the rule in the transactions under the condition that these
transactions also contain the LHS. Another popular measure
for association rules used throughout this paper is lift [17].
The lift of a rule is defined as:

lift(X → Y ) =
supp(X ∪ Y )

supp(X)supp(Y )
(5)

It can be interpreted as the deviation of the support of
the whole rule from the support expected under indepen-
dence given the support of both sides of the rule. Greater
lift values (>> 1) indicate stronger associations. Measures
like support, confidence, and lift are generally called interest
measures because they help with focusing on potentially
more interesting rules. For example, consider a rule such as
{milk, sugar} ⇒ {bread} with support of 0.1, confidence of
0.9, and lift of 2. Now, we know that 10% of all transactions
contain all three items together, thus the estimated conditional
probability of seeing bread in a transaction under the condition
that the transaction also contains milk and sugar is 0.9; and
we see the items together in transactions at double the rate we
would expect under independence between the item sets milk,
sugar and bread [18].

Rules can be generated from data sets having spec-
ified classes as their consequences under the name of
class association rule mining. These rules have the form
{A1, A2, A3, ..., An ⇒ class}. The objective here is to focus
on using exhaustive search techniques to find all rules with the
specified classes as their consequences that satisfy support and
confidence [19]. Appropriate values of support and confidence

is the key for generating rules since keeping a very low support
value will generate large rules and if the support value is too
high, we may lose rare but important rules. In this paper, we
generated rules from the data set having specified classes such
as rules or characteristics of patients who have prior breast
cancer. We also generated or mined rules for non-breast cancer
individuals. Our goal is to find rules or characteristics rules
for these two groups.

V. EXPERIMENTS AND RESULTS

Results of the logit model and association rule mining are
discussed in this section. Association rule mining and class
association rule mining has been applied on the data set.
By selecting the optimum value of support and confidence,
we mined strong rules for both breast cancer, and non-breast
cancer patients. In this section, we also interpret few strong
rules for both groups.

A. Output of Logit Model

The binary logit regression model was used to estimate
the coefficients of significant explanatory variables in the
final model. The software package SAS was used for the
model development. For the model, all attributes were used
as input for the likelihood of breast cancer. Interestingly, all
explanatory variables turned out to be statistically insignificant
(p < 0.0001). Table XI shows the predictor variables which
are significant at the corresponding significance levels in the
binary logit model, which can contribute to the likelihood of
breast cancer.

TABLE XI
PREDICTOR VARIABLES WITH CORRESPONDING P VALUES.

Parameter DF Estimate Standard
Error

Wald
Chi-

Square

Pr
>ChiSq

Intercept 1 -9.1986 0.0544 28589 <.0001

Age group 1 0.223 0.00228 9580 <.0001

Race eth 1 0.0376 0.00463 66 <.0001

First degree relative 1 0.1068 0.0109 95 <.0001

Age menarche 1 0.0259 0.00651 16 <.0001

Age first birth 1 0.0729 0.00375 377 <.0001

BIRADS breast
density 1 -0.1035 0. 00682 230 <.0001

HRT 1 -1.9993 0.0238 7052 <.0001

Menopaus 1 0.4206 0.0132 1009 <.0001

BMI group 1 -0.0164 0.00512 10 0.0014

biopsy 1 5.511 0.0386 20417 <.0001

Positive values of coefficients express that the probability of
breast cancer will increase by a certain amount for the specific



Fig. 5. Scatter plot of 25 rules with minimum support, and confidence of
30% and 80%, respectively.

predictor variables. Interestingly, all explanatory variables are
significant at p < .0001 except the BMI group which is
significant at .0014. From the table it can be referred that
age group, race, first degree relatives, age menarche, age
first birth, menopause, and biopsy has a positive relationship
with previous breast cancer history. However, BIRADS breast
density, HRT, and BMI group have negative relationship with
breast cancer history.

B. Rules Generation from BCSC Risk Factors Data Set

Our goal is to extract characteristics of patients who have
prior breast cancer and who do not have breast cancer. For
that, we generated rules using the association rule technique
with the specified support and confidence. We defined the
consequent of a rule so that we can get our target rules that
represent the characteristics of the patients who have breast
cancer (Breast cancer history = Y es) or who do not have
breast cancer (Breast cancer history = No). Support and
confidence play an important role in rule generation. Initially,
we set the minimum values of support and confidence to 30%
and 80%, respectively. Also, we set the minimum length to
3, which means that the generated rules should have at least
three items including the consequent. With these specified
parameters the algorithm generated 37 rules and after pruning
redundant rules we got 25 rules. The scatter plot of these 25
rules are shown in Fig. 5. From these 25 rules, 11 rules whose
lift values are greater than or equal to one are shown in Table
XII sorted by higher lift value with corresponding support, and
confidence. The software R was used for the experiments.

It is worth to mention that we did not obtain
any rules of patients who have prior breast cancer
(Breast cancer history = Y es) for the specified support
and confidence. This is due to the given values of support,
and confidence; also a very small number of instances in which
patients have breast cancer compared to their counterpart (ratio
is about 1:16).

To obtain the rules of patients having breast cancer we set
support to 10% and keep the confidence the same as before
(80%). After pruning the redundant rules, we have 165 rules.
The scatter plot of these rules is shown in Fig. 6. We still

TABLE XII
RULES GENERATED USING THE ASSOCIATION RULE TECHNIQUE WITH

MINIMUM SUPPORT, AND CONFIDENCE VALUE 30% AND 80%
RESPECTIVELY.

SL Rules Supp.
(%)

Conf.
(%)

Lift

1 {Race=Non-Hispanic-White,
First degree relative=No,biopsy=No}

52 99 1.06

=>{breast cancer history= No}

2 {Age menarche=Age 12 13,
biopsy=No}

31 99 1.06

=>{breast cancer history=No}

3 {First degree relative=No,
biopsy=No}

59 99 1.06

=>{breast cancer history=No}

4 {Race=Non-Hispanic-White, 63 99 1.06
biopsy=No}

=>{breast cancer history=No}

5 {HRT=No, biopsy=No} 60 99 1.06
=>{breast cancer history=No}

6 {BIRADS breast density= 31 99 1.06
scattered fibroglandular densities,

biopsy=No}
=>{breast cancer history=No}

7 {Menopaus=post menopausal,
biopsy=No}

45 99 1.06

=>{breast cancer history=No}

8 {First degree relative=No, 31 95 1.01
BIRADS breast density=
Heterogeneously dense}

=>{breast cancer history=No}

9 {First degree relative=No,
BMI group=10-to-lessThan 25}

33 95 1.01

=>{breast cancer history=No}

10 {First degree relative=No,
Age menarche=Age 12 13}

33 95 1.01

=>{breast cancer history=No}

11 {Race=Non-Hispanic-White,
First degree relative=No}

68 95 1.01

=>{breast cancer history=No}

did not obtain any rules having the consequent equals to Yes,
which means rules of breast cancer patients.

After several experiments, we assigned the value of support
to 0.001% but a high confidence value of 90%, and obtained
67 rules. Here, we set the consequent or class value to Yes
(breast cancer history = Y es) so that we can get the rules
of breast cancer patients only. The scatter plot of these 67
rules is shown in Fig. 7. And from these 67 rules, the top 10
rules sorted by lift are shown in Table XIII.

C. Generating Strong Rules

We obtained many rules using our methods described ear-
lier. Here, we show a few rules for both breast cancer and
non-breast cancer patients that are strong or important as they



TABLE XIII
RULES GENERATED USING ASSOCIATION RULE TECHNIQUE WITH

MINIMUM SUPPORT AND CONFIDENCE OF 0.001% AND 90%,
RESPECTIVELY AND CONSEQUENT FIXED FOR BREAST CANCER PATIENTS

ONLY.

Rules Supp.
(%)

Conf.
(%)

Lift

{Age group=age greater equal 85,
Race=Hispanic,

Age first birth=Age less 20, BI-
RADS breast density=Almost entirely fat,

biopsy=Yes}

0.001 100 16.7

=>{breast cancer history=Yes}
{Age group=age 75 79,

Race=Non-Hispanic-Black,
Age first birth=Age 20 24,

BMI group=35-or-above+, biopsy=Yes}

0.001 99 16.7

=>{breast cancer history=Yes}
{Age group=age greater equal 85,

Race=Non-Hispanic-White,
First degree relative=No,

Age first birth=Nulliparous,

0.001 99 16.7

BMI group=35-or-above+, biopsy=Yes}
=>{breast cancer history=Yes}

{Age group=age 75 79, 0.001 99 16.7
First degree relative=Yes,

Age first birth=Nulliparous,
BIRADS breast density=

Almost entirely fat,BMI group=25-to-
lessThan 30,
biopsy=Yes}

=>{breast cancer history=Yes}
{Age group=age 75 79,

Race=Asian or Pacific Islander,
First degree relative=Yes,

Age menarche=Age greaterEqual 14, BI-
RADS breast density=Heterogeneously dense,

HRT=No, biopsy=Yes}

0.001 99 16.7

=>{breast cancer history=Yes}
{Race=Asian or Pacific Islander, 0.001 99 16.7

First degree relative=Yes,
Age menarche=Age greaterEqual 14,

Age first birth=Age less 20,
BIRADS breast density=

scattered fibroglandular densities,
HRT=No, biopsy=Yes}

=>{breast cancer history=Yes}
{Race=Asian or Pacific Islander,

First degree relative=Yes,
Age first birth=Age less 20,

0.001 99 16.7

BIRADS breast density=
scattered fibroglandular densities,

HRT=No, BMI group=25-to-lessThan 30,
biopsy=Yes}

=>{breast cancer history=Yes}
{Race=Hispanic, 0.001 95 16.7

First degree relative=Yes,
Age menarche=Age greaterEqual 14,

Age first birth=Nulliparous,
BIRADS breast density=

Heterogeneously dense, HRT=No,
Menopaus=post menopausal,

BMI group=10-to-lessThan 25,
biopsy=Yes}

=>{breast cancer history=Yes}
{Age group=age 80 84, 0.002 95 15.66

First degree relative=Yes,
Age first birth=Age 25 29,

BIRADS breast density=
scattered fibroglandular densities,

BMI group=35-or-above+, biopsy=Yes}
=>{breast cancer history=Yes}

{Age group=age 80 84,
First degree relative=Yes,

Age menarche=Age greaterEqual 14,
Age first birth=Age less 20, BI-

RADS breast density=scattered fibroglandular densities,
BMI group=25-to-lessThan 30,

biopsy=Yes}

0.002 95 15.66

=>{breast cancer history=Yes

Fig. 6. Scatter plot of 165 rules with minimum support and confidence of
10% and 80%, respectively.

Fig. 7. Scatter plot of 67 rules with minimum support and confidence of
0.001% and 90%, respectively and the consequent is fixed for breast cancer
patients only (breastcancerhistory = Y es).

have higher confidence and lift values. Strong rules of both
non-breast cancer patients and breast cancer patients are shown
in Table XIV and Table XV, respectively.

D. Interpreting Strong Rules

Rule 1 of Table XIV can be interpreted as “If a person
is a non-Hispanic white with no breast cancer of first degree
relatives, and has not had a previous breast biopsy then the
individual is a non-breast cancer patient”. Rule 4 can be
interpreted as “If a person’s first-degree relatives do not have
breast cancer, and a person’s BMI range is between 10 and 25
then the individual is a non-breast cancer patient”.

We can interpret Rule 1 of Table XV as “If a patient’s race
is a Hispanic with age greater or equal to 85 and having had
the first birth less than 20 years ago, with a BIRADS breast
density being almost entirely fat, and had a previous breast
biopsy then the person is a breast cancer patient”. Likewise,
Rule 2 can be interpreted as “If a person is a non-Hispanic
black with an age between 75 and 79 years, the first birth age
range between 20 to 24 years, BMI value 35 or above, and
had a previous breast biopsy then the individual is a breast
cancer patient”.



TABLE XIV
STRONG RULES FOR NON-BREAST CANCER PATIENTS WITH

CORRESPONDING SUPPORT, CONFIDENCE, AND LIFT VALUES.

SL Rules Supp.
(%)

Conf.
(%)

Lift

1 {Race=Non-Hispanic-White,
First degree relative=No,

biopsy=No}

52 99 1.062

=>{breast cancer history=No}

2 {Race=Non-Hispanic-White,
First degree relative=No}

68 95 1.005

=>{breast cancer history=No}

3 {Age menarche=Age 12 13,
biopsy=No}

31 99 1.063

=>{breast cancer history=No}

4 {First degree relative=No,
BMI group=10-to-lessThan 25}

33 95 1.007

=>{breast cancer history=No}

TABLE XV
STRONG RULES FOR BREAST CANCER PATIENTS WITH CORRESPONDING

SUPPORT, CONFIDENCE, AND LIFT VALUES.

SL Rules Supp.
(%)

Conf.
(%)

Lift

1 {Age group=age greater equal 85,
Race=Hispanic,

Age first birth=Age less 20, BI-
RADS breast density=Almost entirely fat,

biopsy=Yes}

0.001 100 16.70

=>{breast cancer history=Yes}

2 {Age group=age 75 79,
Race=Non-Hispanic-Black,

Age first birth=Age 20 24,
BMI group=35-or-above+,

biopsy=Yes}

0.001 100 16.70

=>{breast cancer history=Yes}

3 {Age group=age greater equal 85,
Race=Non-Hispanic-White,

First degree relative=No,
Age first birth=Nulliparous,

BMI group=35-or-above+,
biopsy=Yes}

0.001 100 16.70

=>{breast cancer history=Yes}

4 {Age group=age 75 79,
First degree relative=Yes,

Age first birth=Nulliparous, BI-
RADS breast density=Almost entirely fat,

BMI group=25-to-lessThan 30,
biopsy=Yes}

0.002 100 16.70

=>{breast cancer history=Yes}

5 {Race=Asian or Pacific Islander,
First degree relative=Yes,

Age menarche=Age greaterEqual 14,
Age first birth=Age less 20,

BIRADS breast densit=
scattered fibrogland ular densities,

HRT=No, biopsy=Yes}

0.002 100 16.70

=>{breast cancer history=Yes}

E. Interpreting Rules based on Support, Confidence, and Lift

If we consider the rules of both breast cancer and non-
breast cancer individuals we can see the significant differences.
For both non-breast cancer and breast cancer individuals, its
observed confidence, which indicates how often the rule has
been found to be true in the data set, is very high (close to
100 %). In case of support, which demonstrates how frequently
the item set or factors appear in the data set, it is high (more
than 30%) for non-breast cancer patients. However, for breast
cancer patients support value is very low (about 0.001%).

For both groups, if we look at the lift value that measures
the degree of dependence between the antecedent and the
consequent value, we can see the differences. For non-breast
cancer individual, lift value is just above 1.0 that means the
relationship between factors of these rules (antecedent part)
and consequent (non-breast cancer patients) are very low. On
the other hand, for the breast cancer patients’ lift value is
very high (more than 16.0) that indicates a greater association
between factors in the antecedent and the consequent (breast
cancer patients).

VI. DISCUSSION

Predicting the risk of breast cancer occurrence is an im-
portant challenge for clinical oncologists as this has direct
influence in their daily practice and clinical service. A reliable
prediction will help oncologists and other clinicians in their
decision-making process and allow clinicians in choosing the
most reliable and evidence-based treatment and prevention
strategies for their patients. Although, recent research has
looked into various data mining techniques to aid clinicians
in the diagnosis of breast cancer, however, there still remain
gaps in suggesting an accurate prediction model. Our paper
explores association rules for breast cancer and non-breast
cancer patients by data mining of the BCSC risk factors data
set. Our findings suggest association rules that could be used
to predict breast cancer risks among the target population.
The data-driven approach that we used in this paper can
guide the efficient process of clinical data set to discover
behavioral risk factor patterns and reveal hidden information
for early detection and initiate prevention efforts as well as
treatment strategies of at risk breast cancer patients. However,
any prediction should be combined with clinical judgment and
individual patient circumstances.

There are several limitations of the current paper. First, we
used the BCSC data set which is robust, however, we did not
have any control of the overall quality of the data collected.
Second, in our data set there are a small number of instances
in which patients have breast cancer compared to non-breast
cancer patients. In our approach, we specified different support
values for both target populations; for breast cancer patients we
set a very low support value. In literature [20], we found that
researchers used multiple support value for rare item problems
and by using a low support value we attained rules of breast
cancer patients that are rare in our cases. Although we used a
low support value for breast cancer patients, however we set



a high confidence value that represents the predictive strength
of the rules.

VII. CONCLUSION

Extracting useful rules has been generated from a breast
cancer risk factor data set using association rule mining.
Before applying association rule mining, we used the logit
model to check the statistical significance of all predictors.
We mined rules for both breast cancer and non-breast cancer
patients with specified support and confidence. The experi-
mental results showed that the generated rules hold the highest
confidence level for both groups. However, in case of breast
cancer patients we have to set a very low support value due
to the imbalance of the data (small number of instances of
patients having breast cancer compared to non-breast cancer
individuals). We also mined strong rules from a huge set of
generated rules and interpreted those rules accordingly. This
research is an important step in improving risk prediction for
people with potential risks for breast cancer.

We intend to extend this research by considering more
risk factors to extract more useful and significant rules not
only for breast cancer but also other cancer types using the
association rule mining algorithm. Furthermore, we plan to
build a predictive model using machine learning techniques
for the breast cancer data set.
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