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Abstract Decision tree algorithms are very popular in the area of data min-
ing since the algorithms have a simple inference mechanism and provide a
comprehensible way to represent the model. Over the past years, fuzzy deci-
sion tree algorithms have been proposed in order to handle the uncertainty in
the data. Fuzzy decision tree algorithms have shown to outperform classical
decision tree algorithms. This chapter investigates a fuzzy decision tree algo-
rithm applied to the classification of gene expression data. The fuzzy decision
tree algorithm is compared to a classical decision tree algorithm as well as
other well-known data mining algorithms commonly applied to classification
tasks. Based on the five data sets analyzed, the fuzzy decision tree algorithm
outperforms the classical decision tree algorithm. However, compared to other
commonly used classification algorithms, both decision tree algorithms are
competitive, but they do not reach the accuracy values of the best performing
classifier. One of the advantages of decision tree models including the fuzzy
decision tree algorithm is however the simplicity and comprehensibility of the
model as demonstrated in the chapter.
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1 Introduction

Data mining is the process of extracting useful information from the knowledge
that is hidden in large volumes of data. The aim in data mining is to find pat-
terns and relationships of data using data analysis tools and other techniques
to build models. There are two distinct models in data mining: predictive
models and descriptive models. The predictive models use data with known
outcomes to develop a model that is then used to explicitly predict the dif-
ferent outcomes. The other model is the descriptive model, which is used to
describe patterns in existing data. Both types of models provide an abstract
representation of the data, which can then guide in the understanding of the
data analyzed.

Data mining techniques have proved to be indispensable when working with
large sets of data. The data mining community has been active in research of
various techniques as well as new applications of data mining for more than
50 years. Naturally, during that time a plethora of techniques was designed
to deal with various scenarios where one well known methodology is based on
decision trees. We can trace the roots of its popularity to the fact that such
methods can easily be interpreted by humans and the extracted knowledge
can be clearly presented and visualized (Breiman, Friedman, Olshen, & Stone,
1984). However, often we encounter problems where decision trees need to
have a strict division between feature values in data sets. In order to deal
with that, Fuzzy Decision Tree (FDT) algorithms emerged (R. L. Chang &
Pavlidis, 1977). This chapter investigates the improvements in classification
accuracy that fuzzy decision trees may exhibit compared to classical decision
tree algorithms.

When discussing the areas where data mining techniques play an impor-
tant role, the biomedical domain is doubtless a prominent one. Here, the data
can be various measurements taken from patients (e.g. heart rhythm or elec-
trocardiogram) or the genes themselves. In order to query the expression of
a multitude of genes, gene expression profiling is used. It presents the mea-
surement of the activity of a large number of genes at once in order to be
able to verify the cellular function. When the focus is on cancer data sets,
gene expression profiling is used to more accurately classify tumors. Besides
classifying tumors, with more powerful gene expression techniques it is also
possible to classify tumor subclasses.

The objective of these methods is to discover not only a single association
but several associations of genes. For this purpose, many features must be
considered, with typically very few of them being significant for any given
classification. Additionally, relatively few data points are available for learning.

Although very popular in practice, classical decision trees share some dis-
advantages that are revealed under these conditions. Specifically, their per-
formance tends to deteriorate with the increase of features and emergence of
complex interactions. Since most decision trees divide the search space into
mutually exclusive regions, often the resulting tree must include several copies
of the same subtree to accurately represent the data. Furthermore, their greedy
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behavior is prone to over-fitting to the training set, as well as irrelevant fea-
tures and noise.

In contrast to that, fuzzy decision trees do not need to assign a data in-
stance with a single branch, but may simultaneously assign more branches
to the same instance with a gradual certainty. In this way, fuzzy decision
trees retain the symbolic tree structure, but are able to represent concepts by
producing continuous classification outputs with gradual transitions between
classes.

In this work, we experiment with a fuzzy decision tree algorithm with
the goal of analyzing gene expression cancer data. Besides the comparison
with a decision tree algorithm, we also compare the proposed algorithm with
several other well known algorithms for classification. The results present the
advantages of fuzzy decision trees over classical decision trees for multiple data
sets in this domain.

This chapter is an extended version of the paper published in (Ludwig,
Jakobovic, & Picek, 2015), and is arranged as follows: Section 2 describes the
related work. The proposed approach is introduced in Section 3. The exper-
imental setup and results are demonstrated in Section 4. In the final section
(Section 5) the conclusions of this research are discussed.

2 Related Work

We divide the relevant research into two categories; the first is concerned
with fuzzy decision tree development and applications, and the second with
the applications of data mining techniques in the analysis of medical data.
However, since this still encompasses a huge research area, we concentrate
only on a subset of papers exploring cancer data research.

The development of fuzzy variants of decision tree induction has been
around for quite a while (R. L. Chang & Pavlidis, 1977; Janikow, 1998),
but they become a topic of interest in recent applications. These approaches
provide examples for the application of “fuzzification” to standard machine
learning methods.

There are many variations of fuzzy decision trees. Soft Decision Trees
(SDT) are presented in (Olaru & Wehenkel, 2003), which combine tree-growing
and pruning to determine the structure and refitting and backfitting to im-
prove the generalization capability. The authors empirically show that SDTs
are more accurate than standard decision trees. In (An & Hu, 2012), the au-
thors propose fuzzy-rough classification trees with a new measure to quantify
the functional dependency of decision attributes on condition attributes within
fuzzy data. The experiments show that fuzzy-rough classification trees outper-
form existing decision tree induction algorithms on 16 real-world datasets.

Fuzzy decision trees have been applied to various domains; in (P.-C. Chang,
Fan, & Dzan, 2010) they are integrated with genetic algorithms for data clas-
sification in database applications, and in (Lai, Fan, Huang, & Chang, 2009)
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for developing a financial time series-forecasting model, where they were also
combined with a genetic algorithm.

In (Biswal & Dash, 2013), the authors use a FDT-based classifier for the
measurement, identification, and classification of various types of power quality
disturbances and they report robust performance under different noise condi-
tions. A fuzzy knowledge-based network is developed in (Mitra, Konwar, &
Pal, 2002) based on the linguistic rules extracted from a fuzzy decision tree.
The effectiveness of the system, in terms of recognition scores, structure of de-
cision tree, performance of rules, and network size, is extensively demonstrated
on three sets of real-life data.

For the biomedical applications, we first enumerate several surveys on the
data mining techniques and cancer data. In the scope of cancer data analysis, a
survey with a comprehensive study of various cancer classification methods is
given in (Lu & Han, 2003). The authors conduct an analysis of the efficiency of
methods based on their speed, accuracy and ability to reveal biologically mean-
ingful gene information. Another survey on data mining techniques and breast
cancer data is given in (Padmapriya & Velmurugan, 2014). In their work, the
authors discuss the algorithms ID3 and C4.5. In (Palivela, Yogish, Vijayku-
mar, & Patil, 2013), the authors compare several data mining techniques on
breast cancer data. A survey on decision tree classifiers in gene micro array
data analysis is given in (Polaka, Tom, & Borisov, 2010). A general framework
of sample weighting to improve the stability of feature selection methods is
proposed in (Yu, Han, & Berens, 2012).

Experimentation with a multiclass classifier based on SVM (Support Vec-
tor Machine) algorithm is reported in (Ramaswamy et al., 2001). The authors
use samples of 14 common tumor types and achieve an overall classification
accuracy of 78%. A method of gene selection with reliability analysis is de-
vised in order to help differentiate between histologically similar cancers (Li
& Casey, 2004). In (Cuperlovic-Culf, Belacel, & Ouellette, 2005), the question
is addressed on how to correctly select diagnostic marker genes from the gene
expression profiles.

New astrocytic tumor micro-array gene expression data set is experimented
with using an artificial neural network algorithm (Petalidis et al., 2008). With
this algorithm the authors address grading of human astrocytic tumors, derive
specific transcriptional signatures from histopathologic subtypes of astrocytic
tumors, and assess whether these molecular signatures define survival prog-
nostic subclasses. Another artificial neural networks approach for classifying
cancers to specific diagnostic categories based on their gene expression signa-
tures is provided in (J. Khan et al., 2001).

DNA micro-array analysis with supervised classification has shown to iden-
tify a gene expression signature to be strongly predictive of a short inter-
val to distant metastases for breast cancer patients (van’t Veer et al., 2002).
With this strategy it is possible to select the patients who would benefit from
chemotherapy or hormonal therapy. The problem how to select a small subset
of genes from large patterns of data recorded on DNA micro-arrays is addressed
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in (Guyon, Weston, Barnhill, & Vapnik, 2002). The authors experiment with
SVM algorithms based on recursive feature elimination.

Another novel method called decision trunks that is based on decision trees
to classify cancer using expression data is proposed in (Ulfenborg, Klinga-
Levan, & Olsson, 2013). The results suggest that the new algorithm performs
at least as good as the state of the art algorithms when considering accuracy.

The use fuzzy decision trees to predict breast cancer survivability is re-
ported in (M. U. Khan, Choi, Shin, & Kim, 2008). The authors compare
decision trees and fuzzy decision trees and find FDT to be more robust and
balanced than DT. A logistic regression and decision trees for survivability
prognosis in patients with breast cancer is given in (Wang, Makond, & Wang,
2013). The authors show that logical regression has better statistical power in
predicting five-year survivability.

In (Hamdan & Garibaldi, 2010), an adaptive fuzzy inference system tech-
nique for the estimation of survival prediction in cancer patients is proposed.
Three methods, namely, decision trees, artificial neural networks, and logistic
regression to develop prediction models for breast cancer survivability is given
in (Delen, Walker, & Kadam, 2005). The authors found decision trees to be
the predictor with the best accuracy.

3 Fuzzy Decision Tree Classifier

Supervised classification is a very important and frequently used technique
that is applied in the area of medical informatics. The most commonly used
classification algorithms include logic-based algorithms, neural network algo-
rithms, statistical learning algorithms, instance-based learning algorithms, and
support vector machine algorithms.

In terms of learning-based models, there are two groups: decision trees
and rule-based classifiers. Decision trees classify instances by sorting them
based on feature values. A decision tree classifier builds a decision tree model
that can be used for the classification of unseen data. The decision tree model
consists of a series of observations (branch nodes) that lead to conclusions (leaf
nodes). The main difference between classical decision tree modeling and fuzzy
decision tree modeling is the use of crisp or soft discretization, respectively.
Classical decision tree modeling uses crisp discretization, whereby the decision
space is partitioned into a set of non-overlapping subspaces using the crisp
discretization method. For soft discretization, the decision space is partitioned
into a set of overlapping subspaces. For both classical and fuzzy decision trees,
each path from the root node to a leaf node represents a classification rule.

The algorithm of the FDT classifier starts by sorting the continuous values
of a feature. It then produces a possible candidate “cut-point”, and “fuzzifies”
the “cut-point” by using an entropy evaluation function. This checking of the
best “cut-point” is done recursively and is applied to all attributes. Once all
attributes have been soft discretized, the attribute with minimum value is
selected to generate two child branches and nodes. This steps repeats until
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one of the stopping criteria is met. A detailed description of the algorithm can
be found in (Chen & Ludwig, 2013; Ludwig et al., 2015).

In order to show the decision trees that are generated by a DT and FDT
classifier, a diabetes data set (obtained from the UCI repository (Frank &
Asuncion, 2010)) has been analyzed. The diabetes data set consists of 8 fea-
tures, 768 instances and 2 classes. The decision trees generated by a classical
DT (J48) (WEKA’s J48 algorithms was used (Witten, Frank, & Hall, 2011))
and our FDT (Java implementation) are shown in Figures 1 and 2, respectively.
What we can see is that both decision trees are roughly of equal complexity,
but different decision trees were generated in terms of the features used.



C
la

ssifi
ca

tio
n

o
f

C
a
n

cer
D

a
ta

7

Fig. 1: Decision tree obtained from FDT classifier for the Ovarian cancer data set
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Fig. 2: Decision tree obtained from FDT classifier for the Prostate data set
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Table 1: Details of binary data sets used for experiments

Data set name # of features # of instances Class balance Size Short description Ref.

Colon tumor full: 2,000
reduced: 26

62 40/22 1.2 MB Data collected from colon-cancer
patients; tumor biopsies show-
ing tumors (“negative”), and nor-
mal (“positive”) biopsies are from
healthy parts of colons of the same
patients

(Alon et al., 1999)

Leukemia full: 7,129
reduced: 81

72 47/25 2.2 MB Data collected from bone mar-
row samples; distinction is be-
tween Acute Myeloid Leukemia
(“AML”), and Acute Lymphoblas-
tic Leukemia (“ALL”) without
previous knowledge of these classes

(Golub et al., 1999)

Lung cancer full: 12,533
reduced: 160

181 150/31 12 MB Data collected from tissue samples;
classification between Malignant
Pleural Mesothelioma (“MPM”),
and ADenoCArcinoma (“ADCA”)
of the lung

(Gordon et al., 2002)

Ovarian cancer full: 15,154
reduced: 35

253 162/91 34 MB Data to identify proteomic pat-
terns in serum that distinguish
ovarian cancer (“cancer”) from
non-cancer (“normal”)

(Petricoin et al., 2002)

Prostate cancer full: 12,600
reduced: 75

136 77/59 5.5 MB Data from prostate tumor samples,
whereby the non-tumor (“nor-
mal”) prostate samples, and tumor
samples (“cancer”) are identified
using 12,600 genes

(Singh et al., 2002)



10 Simone A. Ludwig et al.

4 Experiments and Results

The FDT was implemented in Java as outlined in the previous section. The
classical decision tree algorithm used for comparison is WEKA’s J48 deci-
sion tree implementation (Witten et al., 2011). Other algorithms based on
naive Bayes, Bayesian network, logistic regression, radial basis function neural
network, and support vector machine are also used and compared with. All
algorithms are further introduced in one of the following subsections.

In addition, since feature selection is a normal preprocessing step in data
mining, WEKA’s attribute selection method is used to filter out the relevant
features. Results of both, FDT and J48, are given for the complete data set (all
features) as well as the reduced feature set selected by the attribute selection
method. 10-fold cross-validation was used for the training and testing of all
experiments.

4.1 Data Sets

The data sets1 that have been chosen for this investigation are listed in Table 1.
All data sets contain gene data information for different types of cancer. The
number of features (all numeric) for the original data set (full) as well as
after feature selection is applied is also given (reduced) in the column. The
number of instances and the class balance of the binary data sets are also
listed. Furthermore, a short description is provided and more details can be
found looking up the references listed in the last column.

4.2 Evaluation Measures

In order to evaluate the medical data sets, the following measures have been
chosen based on the number of True Positives (TP ), True Negatives (TN),
False Positives (FP ), and False Negatives (FN):

Accuracy =
TP + TN

TP + FP + TN + FN
. (1)

Sensitivity =
TP

TP + FP
. (2)

Specificity =
TN

FP + TN
. (3)

Another measure used to evaluate medical data sets is the Receiver Oper-
ating Characteristic (ROC) (Swets, 1996) curve, which is said to be a good in-
dicator of the relationship between sensitivity and specificity. The AUC (Area
Under the Curve) is calculated as follows:

AUC =
1− (1− Specificity) + Sensitivity

2
. (4)

1 http://datam.i2r.a-star.edu.sg/datasets/krbd/
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4.3 Comparison Algorithms

The implemented FDT algorithm is compared with a classical decision algo-
rithm known as J48 (Quinlan, 1993), which is implemented in WEKA. J48 is
an extension of the C4.5 and the earlier ID3 algorithm (Quinlan, 1979).

The other comparison algorithms that are used for this investigation are:

– NB: is a Naive Bayes classifier implementation using estimator classes,
whereby numeric estimator precision values are chosen based on the anal-
ysis of the training data.

– BN: implements a Bayes Network learning algorithm that uses various
search algorithms and quality measures.

– Log: is a logistic regression model classifier. The classifier is based on a
multinomial logistic regression model with a ridge estimator.

– RBF: is a radial basis function neural network model classifier. The classi-
fier normalizes all attributes, and the initial centers for the Gaussian radial
basis functions are identified using k-means.

– SMO: implements the sequential minimal optimization algorithm for train-
ing a support vector classifier. All missing values are replaced and nominal
attributes are transformed into binary ones. In addition, all attributes are
normalized by default.

– BG: implements the Bagging algorithm, which is an ensemble meta-algorithm
that improves the accuracy and stability of learning algorithms that are
used for classification and regression tasks.

– RotF: is the abbreviation for the Rotation forest algorithm that is a com-
bination of decision trees with binary partitioning. Each decision tree is cre-
ated based on the subset of training data with a bootstrap sample method.

– RanF: implements the Random forest algorithm. RanF uses a combination
of decision trees with binary partitioning. Each tree is created based on
training data with bootstrap sampling.

4.4 Experimental Results

Table 2 shows the accuracy, sensitivity and specificity values of the data sets
using the complete feature set, i.e., using the complete data sets with all fea-
tures. We can see that in terms of accuracy, the Ovarian cancer data sets
achieves the highest values closely followed by the lung data set. However,
comparing both data sets in terms of sensitivity and specificity reveals that
the Ovarian cancer data set performs better scoring in the lower ninety per-
cent.

Table 3 shows the same measures as Table 2, however, this time the fea-
ture set of the data sets are reduced after feature/attribute selection has been
applied. We can see that the accuracy values are higher with the exception of
the Lung cancer data set that scored the same accuracy. In terms of sensitiv-
ity and specificity, improved values can also be observed. Therefore, we can
conclude that overall the feature reduction method improved the accuracy.
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Table 2: Results of FDT measures with full feature set

Data set Accuracy Sensitivity Specificity

Colon tumor 0.7746 0.8409 0.7200

Leukemia 0.8250 0.8475 0.6400

Lung cancer 0.9553 0.7879 0.9539

Ovarian cancer 0.9589 0.9175 0.9470

Prostate cancer 0.7985 0.8571 0.7885

Table 3: Results of FDT measures with reduced feature set

Data set Accuracy Sensitivity Specificity

Colon tumor 0.8028 0.8864 0.7826

Leukemia 0.8750 0.8983 0.7391

Lung cancer 0.9553 0.7879 0.9540

Ovarian cancer 0.9711 0.9485 0.9662

Prostate cancer 0.8836 0.7662 0.7188

Table 4: Results of comparison of FDT and J48 with full and reduced feature
set

Data set
Full feature set Reduced feature set
FDT J48 FDT J48

Colon tumor 0.7746 0.8226 0.8028 0.8710

Leukemia 0.8250 0.7917 0.8750 0.8472

Lung cancer 0.9553 0.9503 0.9553 0.9613

Ovarian cancer 0.9594 0.9565 0.9711 0.9605

Prostate cancer 0.7985 0.7941 0.8836 0.8824

Table 4 shows the accuracy values comparing FDT with J48 as well as
showing the effect of using the complete data set with all the features versus
using the reduced data set. As can be seen by the values in bold, on the full
data set FDT outperformed J48 four out of five times, and on the reduced
data sets FDT outperformed J48 three out of five times.

Figure 3 shows the AUC values for the data set with and without feature
selection. The AUC values are often used since it shows the interplay between
sensitivity and specificity. As can be seen by the figure, the AUC is higher for
the reduced feature data sets with the exception of the Prostate cancer data
set.

Table 5 shows the comparison of FDT, J48, the naive Bayes classifier (NB),
the Bayesian network algorithm (BN), the logistic regression (Log), radial basis
function network (RBF), and the support vector machine algorithm (SMO).
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Fig. 3: Comparison of AUC values for different data sets with full and reduced
feature set

Based on the five data sets, the SMO algorithm performs best out of all
classifiers. It scores best 7 out of 10 times when applied to the full data sets
as well as the reduced data sets. SMO is closely followed by NB and BN
(both scoring best 4 times). In particular, SMO achieves 100% accuracy on the
Lung cancer data set and the Ovarian cancer data set. The overall conclusions
that can be drawn are that the SMO clearly outperforms all other classifiers
including FDT and J48. FDT only achieves close results on the Lung and
Ovarian data sets.
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Table 5: Results of comparison of FDT with other WEKA algorithms in terms of accuracy

Data set FDT J48 NB BN Log RBF SMO BG RotF RanF

Colon tumor
full 0.7746 0.8225 0.5323 0.7581 0.7097 0.7903 0.8548 0.7903 0.7742 0.7581

reduced 0.8028 0.8710 0.8548 0.9032 0.7581 0.8710 0.8548 0.8710 0.8871 0.8226

Leukemia
full 0.8245 0.7917 0.9861 0.9722 0.9028 0.9306 0.9861 0.9028 0.9306 0.8750

reduced 0.8750 0.8472 1.0000 1.0000 0.9583 1.0000 0.9861 0.8889 0.9583 0.9722

Lung cancer
full 0.9553 0.9503 0.9834 0.9834 0.9889 0.9779 0.9945 0.9779 0.9669 0.9834

reduced 0.9553 0.9613 1.0000 1.0000 0.9945 0.9945 1.0000 0.9779 0.9890 1.0000

Ovarian cancer
full 0.9594 0.9565 0.9249 0.9210 0.9841 0.8340 1.0000 0.9723 0.9658 0.9605

reduced 0.9711 0.9605 1.0000 0.9960 1.0000 1.0000 1.0000 0.9723 1.0000 0.9881

Prostate cancer
full 0.7985 0.7941 0.5588 0.6618 0.8456 0.6617 0.9118 0.8529 0.9044 0.7941

reduced 0.8836 0.8824 0.6176 0.9559 0.7647 0.7647 0.8676 0.8676 0.9412 0.9412
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Investigating the generated models of the FDT algorithm in the form of
decision trees (as shown in Figures 5 - 9) as compared to the best-performing
SVM (SMO) classifier reveals that only a fraction of the features are used for
the model of FDT, whereas all features are used for the SMO model generation
(the reduced feature set is used). This is true for all other non decision tree
algorithms. Table 6 lists the number of features of the model created by SMO
and other algorithms, and FDT, respectively. For example, for the Colon tumor
data set only 6 as compared to 26 features are used for the model of FDT
versus all others including SMO, and even a wider gap is observed for the
Lung cancer data set on which FDT uses 3 features whereas SMO and others
use 160 features. This demonstrates that the FDT models are much simpler
in terms of complexity as well as comprehensibility. To show an example of
the models created by FDT and SMO, the model of a decision tree generated
by FDT is shown in Figure ??, and the model generated by SMO on the lung
cancer data set is as given in Figure 4 (output from WEKA console):

=== Classifier model (full training set) ===
SMO
Kernel used: Linear Kernel: K(x,y) = <x,y>
Classifier for classes: negative, positive
BinarySMO
Machine linear: showing attribute weights, not support vectors.
-0.2258 * (normalized) attribute143
+ 0.8376 * (normalized) attribute249
+ -0.237 * (normalized) attribute258
+ -0.4451 * (normalized) attribute279
+ 1.1883 * (normalized) attribute377
+ -0.1269 * (normalized) attribute467
+ -1.0661 * (normalized) attribute576
+ -0.5733 * (normalized) attribute625
+ -0.7617 * (normalized) attribute682
+ -0.5918 * (normalized) attribute763
+ 0.9659 * (normalized) attribute765
+ 0.2894 * (normalized) attribute897
+ -0.8163 * (normalized) attribute1042
+ -0.6559 * (normalized) attribute1153
+ -0.207 * (normalized) attribute1200
+ -0.1432 * (normalized) attribute1227
+ -0.5952 * (normalized) attribute1325
+ -0.0822 * (normalized) attribute1328
+ -0.529 * (normalized) attribute1412
+ 0.8739 * (normalized) attribute1423
+ 0.6139 * (normalized) attribute1560
+ -0.4861 * (normalized) attribute1562
+ 0.175 * (normalized) attribute1635
+ -0.1088 * (normalized) attribute1671
+ -0.8822 * (normalized) attribute1772
+ 0.2362 * (normalized) attribute1917
+ 0.0996

Fig. 4: WEKA’s output of the model generated of the SMO classifier applied
to the Lung cancer data set
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What can be observed by the comparison of the model generated by SMO
versus the decision tree model generated by FDT, is the simple and easy to
visualize and understand model that is generated by the decision tree model.
The mathematical formula involving all attributes as given as the SMO model
is more difficult to describe and interpret. Besides SMO, the other machine
learning algorithms used for comparison involve a mathematical model gener-
ation that is similar in outcome than the SMO model.

To further discuss and interpret the generated decision trees, let us look
at the decision tree generated for the Lung cancer data set (see Figure ??).
The constructed decision tree is based on three decision node, namely 1394 at,
34320 at, and 37716 at. Given this decision tree, a unseen example can then
be routed down the tree to reach a decision node in order to present the output.
For example, if a patient has the following values: 1394 at=420, 34320 at=2100,
and 37716 at=1500, then the output will be Mesothelioma. The decision tree
model is very intuitive since the resulting model is easy to understand and
assimilate by humans. That is the reason for its popularity in particular in the
medical domain.
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Fig. 5: Decision tree obtained from FDT classifier for the Colon tumor data set
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Table 6: Comparison of features used for the generation of the model

SMO and other algorithms FDT

Colon tumor 26 6

Leukemia 81 4

Lung cancer 160 3

Ovarian cancer 35 6

Prostate cancer 75 8
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Fig. 6: Decision tree obtained from FDT classifier for the Leukemia data set
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Fig. 8: Decision tree obtained from FDT classifier for the Ovarian cancer data set
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Fig. 9: Decision tree obtained from FDT classifier for the Prostate data set
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5 Conclusion

This chapter investigated a fuzzy decision tree implementation applied to the
classification of gene expression data. Five high-dimensionality cancer data
sets were analyzed and compared with a classical decision tree algorithm as
well as other well-known data mining algorithms.

The results revealed that comparing FDT with J48, the FDT algorithm
outperformed J48 in terms of accuracy on four out of the five data sets when
applied to the classification using the full data sets, and 3 out of 5 times
when applied to the reduced data sets after feature selection was applied. In
general, higher values of accuracy, sensitivity, and specificity were achieved on
the preprocessed data sets as has been shown in past literature.

Other measures of sensitivity and specificity were also in favor of FDT. The
AUC values for FDT were also calculated and revealed that, in general, higher
AUC values are achieved when the preprocessed data sets were investigated.
In addition, the data sets, both full and reduced feature set, were run with
common data mining algorithms and the support vector machine algorithm
outperformed all other data mining algorithms achieving 100% accuracy on
some data sets. This implies that the decision tree algorithms (both FDT and
J48) are not the best choice when analyzing the five gene cancer data sets
when accuracy is the only concern.

Further analyzing the complexity of the resulting models comparing the
overall best-performing SVM algorithm with the FDT algorithm revealed that
the model of FDT is many times less complex since only a fraction of features
are used for FDT as compared to SVM, which uses all features. The compact-
ness of the resulting decision tree model of FDT as well as the comprehensi-
bility of the model are the strengths of the decision tree algorithms including
the implemented FDT algorithm.

To summarize, the benefits of the decision tree model are: (1) in-build
feature selection, (2) nonlinear relationships between parameters do not affect
the tree performance, and (3) easy to interpret and explain.

Future work includes the evaluation of the FDT algorithm on larger gene
expression data sets once they become available. Furthermore, a possible im-
provement of the FDT algorithm with, for example, another algorithm such
as neural networks could be investigated.
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