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Abstract 

The need to understand large, complex, information rich data sets is common to all fields of 

studies in this current information age. Given this tremendous amount of data, efficient and 

effective tools need to be present to analyze and reveal valuable knowledge that is hidden within 

the data. Clustering analysis is one of the popular approaches in data mining and has been widely 

used in big data analysis. The goal of clustering involves the task of dividing data points into 

homogeneous groups such that the data points in the same group are as similar as possible and 

data points in different groups are as dissimilar as possible. The importance of clustering is 

documented in pattern recognition, machine learning, image analysis, information retrieval, etc.  

Due to the difficulties of parallelization of the clustering algorithms and the inefficiency at large 

scales, challenges for applying clustering techniques in big data has arisen. The question is how 

to deploy clustering algorithms for this tremendous amount of data to get the clustering result 

within a reasonable time. This chapter provides an overview of the mainstream clustering 

techniques proposed over the past decade and the trend and progress of clustering algorithms 

applied in big data. Moreover, the improvement of clustering algorithms in big data are 

introduced and analyzed. The possible future for more advanced clustering techniques are 

illuminated based on today’s information era.  
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1.1 Introduction  

1.1.1 Application background 

An overwhelming flow of data in structured, unstructured or heterogeneous format has been 

accumulated due to the continuous increase in the volume and detail of data captured by 

organizations, such as social media, government, industry and science. These massive quantities 

of data are produced because of the growth of the web, the rise of social media, the use of 

mobile, and the information of Internet of Things (IoT) by and about people, things, and their 

interactions. The big data era has arrived. Big data becomes the most influential force in daily 

life. According to the IDC reports, the digital universe is doubling in size every two years and it 

will reach 44 zettabytes by 2020 [1].  

How to store huge amounts of data is not the biggest problem anymore. But how to design 

solutions to understand this big amount of data is a major challenge. Operations such as 

analytical operations, process operations, retrieval operations, are very difficult and hugely time 

consuming because of this massive volume of data. One solution to overcome these problems is 

the use of data mining techniques in discovering knowledge from big data. Data mining [2] is 

called exploratory data analysis, among other things. It is an analytic process designed to explore 

data. Data mining aims to search for consistent patterns or systematic relationships between 

variables. It then validates the findings by applying the detected patterns to new subsets of data. 

Although the hidden patterns are derived from heterogeneous data in big data mining, these 

hidden patterns can still be reviewed as structured knowledge. The structured knowledge is 

combined with human knowledge of decision makers that are heterogeneous or unstructured and 

upgraded into intelligent knowledge [3]. 

 

1.1.2 Big data challenge 
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The term of big data [4] that refers to large database has a comprehensive definition through the 

3Vs of big data: volume, variety, and velocity. Garter [5] extended this 3Vs model to a 4Vs 

model by including a new “V”: value. More recently, this model has been updated to 5Vs [6]: 

volume, velocity, variety, veracity and value. Where volume refers to the vast amounts of data 

generated every second. Velocity refers to the speed at which new data is generated and the speed 

at which data moves around. Variety refers to the different types of data, such as structured, 

unstructured and heterogeneous data, and different sources of data that can be used. 

Veracity refers to the messiness or trustworthiness of the data. Quality and accuracy are less 

controllable with different forms of big data. Value refers to how the data can be turned into 

value. It is the process of discovering hidden values of big data sets, which then documents and 

socializes as realized values. The challenges of big data have been arisen because of its 5Vs 

characteristics [7]: 

Volume: masses of data has been produced by the increased use of emails, twitter messages, 

photos, video clips and sensor data. This massive data is too large to store and is hard to 

analyze using traditional database technology. The challenge is how to determine the 

relevance within large data volumes and how to extract valuable information from the 

relevant data.  

Velocity: another change of big data is how to respond quickly to data and deal with it in a 

reasonable time. Techniques on analyzing the data while it is being generated without ever 

putting it into databases is urgent in the field of big data study.   

Variety: data comes from different sources with different specifications such as Twitter, 

Facebook, LinkedIn and instant messaging in complex and heterogeneous format. Another 

challenging issue is how to manage, merge and govern the different forms of data. 



4 

  

Complexity: quality and accuracy are less controllable due to the different sources and 

different structures of data. It becomes really complicated to connect to and associate from 

heterogeneous data in order to extract useful information and thus improvements on 

exploiting this huge amount of data are very wide and dispersed. Data complexity increases 

with the increase in volume. Traditional data management with relational database tools are 

no longer sufficient to meet the requirements to capture, store and further analyze big data. 

1.1.3 Big data clustering analysis 

The speed of information growth exceeds the Moore’s Law at the beginning of this new century. 

Given this tremendous amount of data, efficient and effective tools need to be present to analyze 

and reveal valuable knowledge that is hidden within the data. Clustering is one of the popular 

approaches in data mining and has been widely used in big data analysis. The goal of clustering 

involves the task of dividing data points into homogeneous groups such that the data points in the 

same group are as similar as possible and data points in different groups are as dissimilar as 

possible.  

However, conventional clustering techniques cannot cope with this huge amount of data because 

of their high complexity and computational cost [8]. The question for big data clustering is how 

to scale up and speed up clustering algorithms with minimum sacrifice to the clustering quality. 

Therefore, an efficient processing model with a reasonable computational cost of this huge, 

complex, dynamic and heterogeneous data is needed in order to exploit this huge amount of data. 

Single machine clustering techniques and multiple machine clustering techniques are two most 

popular big data clustering techniques. Single-machine clustering algorithms run in one machine 

and can use resources of just one single machine while the multi-machine clustering [8] 
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techniques can run in several machines with access to more resources. Multi-machine clustering 

techniques have become more popular due to the better scalability and faster user response time.    

1.1.4 Chapter organization 

The rest of the chapter is organized as follows: the main stream clustering algorithms and key 

technologies for clustering in big data are introduced in Chapter 1.2. The instances of clustering 

techniques which have been used in single-machine clustering and multi-machine clustering are 

illustrated in Chapter 1.3. The applications of big data clustering include image segmentation, 

load balancing in parallel computing, genetic mapping and community detention are discussed in 

Chapter 1.4. Finally, the chapter is concluded in Chapter 1.5. 

1.2 Overview of Clustering Techniques in Big Data 

1.2.1 General Information of Clustering Analysis 

Clustering is one of the most fundamental tasks in exploratory data analysis that groups similar 

data points in an unsupervised process. Clustering techniques have been exploited in many fields 

including in many areas, such as data mining, pattern recognition, machine learning, 

biochemistry and bioinformatics [9]. The main process of clustering algorithms is to divide a set 

of unlabeled data objects into different groups. The cluster membership measure is based on a 

similarity measure. In order to obtain a high quality partition, the similarity measure between the 

data objects in the same group is to be maximized, and the similarity measure between the data 

objects from different groups is to be minimized. Most of the clustering task uses an iterative 

process to find locally or globally optimal solutions from a high-dimensional data sets. In 

addition, there is no unique clustering solution for real-life data and it is also hard to interpret the 

‘cluster’ representations [9]. Therefore, the clustering task requires much experimentation with 

different algorithms or with different features of the same data set. Hence, how to save 
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computational complexity is a significant issue for the clustering algorithms. Moreover, 

clustering very large data sets that contain large numbers of records with high dimensions is 

considered a very important issue nowadays. Most conventional clustering algorithms suffer 

from the problem that they do not scale with larger sizes of data sets, and most of them are 

computationally expensive with regards to memory space and time complexities. For these 

reasons, the parallelization of clustering algorithms is a solution to overcome the aforementioned 

problems, and the parallel implementation of clustering algorithms is inevitable. 

More importantly, clustering analysis is distinguished from other analysis [9]. Clustering 

analysis belongs to the so called unsupervised learning category. The main goal is to divide a set 

of unlabeled data sets into several groups based on the conceptual or hidden properties of the 

input data sets.  In other words, clustering analysis is unsupervised ‘nonpredictive’ learning. It 

divides the data sets into several clusters based on a subjective measurement. Clustering analysis 

is unlike supervised learning and it is not based on a ‘trained characterization’. In general, there 

is a set of desirable features for a clustering algorithm [9,10]: scalability, the temporal and spatial 

complexity of the algorithm should not explode on large data sets. Robustness, the outliers in the 

data set should be detected during the process. Order insensitivity, the ordering of the input data 

should not affect the outcome of the algorithm. Minimum user-specified input, the number of 

user-specified parameters should be minimized. Arbitrary-shaped clusters, the clusters can be 

shaped arbitrarily. Point proportion admissibility, different clustering algorithms produce 

different results with different features. Hence, a clustering algorithm should be chosen such that 

duplicating the data set and the re-clustering task should not change the clustering results.  

1.2.2 Mainstream Clustering Algorithms  

Depending on the data properties or the purpose of clustering, different types of clustering 
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algorithms have been developed [10]:  

Partitioning clustering requires a fixed number of clusters to be specified a priori. Objective 

functions such as the square error function are used as a criterion in the optimization process 

of data partitioning. Partitioning clustering uses an iterative process to optimize the cluster 

centers, as well as the number of clusters. 

Hierarchical clustering does not specify the number of clusters, and the output is 

independent of the initial condition. However, the hierarchical clustering is static, i.e., the 

data points assigned to a cluster cannot be reassigned to another cluster. In addition, it will 

fail to separate overlapping clusters due to the lack of information regarding the global shape 

or size of the clusters.  

Density-based clustering separates data objects based on their regions of density, 

connectivity and boundary. The clusters are defined as connected dense component which 

can grow in any direction the density leads to. Density-based clustering is good for 

discovering clusters of arbitrary shapes and it can provide a natural protection against 

outliers.  

Grid-based clustering divides the space of data objects into grids. It is capable to go through 

the dataset when computing the statistical values for the grids with a fast processing time. 

However, the performance of grid-based clustering depends on the size of the grid, it is 

insufficient to obtain the required clustering quality for highly irregular data distributions.  

Model-based clustering assumes that the data is generated by a mixture of underlying 

probability distributions. It is a method which is used to optimize the fit between the given 

data and the predefined mathematical model. One advantage of model-based clustering is 

that it can automatically determine the number of clusters based on standard statistics. 

Evolutionary clustering approaches use genetic algorithm, particle swarm optimization and 

other evolutionary approach for clustering task. For example, genetic algorithm uses 



8 

  

evolutionary operators (such as selection, crossover and mutation) and a population to obtain 

the optimal partition of the input data. Evolutionary approaches are stochastic and use an 

iterative process. These algorithms start with a random population of solutions which is a 

valid partition of data with a fitness value. During the iterative step, the evolutionary 

operators are applied to generate the new population. A population’s likelihood of surviving 

into the next iteration is determined by a fitness function. The iterative step is repeated until 

it finds the required solution meeting some stop criteria.  

1.2.3 Key Technologies for clustering in big data  

Unlike traditional clustering algorithms, volume of data must be taken into account when 

clustering big data because this requires substantial changes in the architecture of storage system. 

In addition, most of the traditional clustering algorithms are designed to handle either numeric or 

categorical data with limited size. On the other hand, big data clustering deals with different 

types of data such as image, video, sensors, mobile devices, text etc. [11, 12]. Moreover, the 

velocity of big data requires the big data clustering techniques to have a high demand for online 

processing of data. At the high level of the five category clustering algorithms, most of the 

algorithms have a similar procedure. These algorithms start with some random initialization and 

follow some iterative process until some convergence criteria are met. For example, partitioned 

clustering such as the k-means algorithm, starts with randomly chosen k centroids and reassigns 

each data point to the closest cluster centroids in an iterative process. Thus, the issue of big data 

clustering is how to speed up and scale up the clustering algorithms with the minimum sacrifice 

to the clustering quality. There are three ways to speed up and scale up big data clustering 

algorithms. 
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The first way is to reduce the iterative process using sampling-based algorithms.  Sampling-

based algorithms perform the clustering based on a sample of the datasets instead of using on the 

whole dataset. Complexity and memory space needed for the process decreases in sampling-

based algorithms because computation only needs to take place for smaller sample dataset. PAM, 

CLARA and CLARANS [9-12] are proposed to fight with the exponential search space in the K-

medoid clustering problem.  

The second way is to reduce the data dimension using randomized techniques. Dimensionality of 

the dataset is another aspect which influences the complexity and speed of clustering algorithms. 

Random projection and global projection are used to project dataset from a high dimensional 

space to a lower dimensional space [8, 12]. CX/CUR, CMD and Colibri [8, 12] are dimension 

reduction techniques which are proposed to reduce long execution times of big data clustering.  

The last way is to apply parallel and distributed algorithms use multiple machines to speed up the 

computation in order to increase the scalability. Parallel processing applications include 

conventional parallel applications and data-intensive applications. The conventional parallel 

applications assume that data can be fit into the memory of distributed machines. Data intensive 

applications are I/O bound and devote the largest fraction of execution time to the movement of 

data. OpenMP, MPI [13], and MapReduce are common parallel processing models for 

computing data-intensive applications.  

1.3 Instances of Clustering Techniques in Big Data  

In this section, we will list some clustering techniques which are designed for large-scale data 

sets. There are mainly two types of techniques based on the number of computer nodes that have 

been used: single-machine techniques and multi-machine techniques. Due to the nature of 

scalability and faster response time to the users, multi-machine clustering techniques have 
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attracted more attention. A list of common big data clustering techniques is shown in Figure 1.  

 

 

Figure 1: A list of big data clustering techniques. 

1.3.1 Single-machine clustering techniques 

Single-machine clustering techniques run in one machine and the data has been store in one 

machine. Sampling based techniques and dimension reduction techniques are two common 

strategies for single-machine techniques.  

1.3.1.1 Sampling Based Techniques 

The problem of scalability in clustering algorithms is based on computing time and memory 

requirements. Sampling based algorithms handle one sample of the dataset at a time, and then 

generalize it to whole dataset. Most of these algorithms are partitioning based algorithms.  

CLARANS is an example of the K-medoids method which has been extended to spatial very 

large database (VLDB) [9-12]. Before CLARANS, PAM (Partitioning around medoids) and 

CLARA were the two early version of k-medoid method. PAM was one of the first k-medoids 

algorithms introduced. It is more robust than k-means in presence of noise and outlier detection. 

PAM combines relocation of points between perspective clusters with re-nominating the points 

as potential medoids in an iterative process. The objective function is adopted to guide the 

process. The space complexity of PAM is O(n2) because it needs to store the entire pair-wise 

dissimilarity matrix between objects in the central memory. Hence, PAM becomes impractical in 
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large datasets. Unlike PAM, CLARA is proposed to avoid this problem. CLARA uses five 

samples and each sample has O(k) points. PAM will be applied to each sample and CLARA 

retains the best medroids using the objective function. The whole data set is assigned to resulting 

medoids for final partition. Both space complexity and time complexity are linear, not quadratic.  

CLARANS is proposed to improve the efficiency in comparison to CLARA. CLARANS use 

random search to generate neighbors by starting with a set of medroids. If a neighbor represents 

a better partition, the process continues with the same set of medoids. Otherwise, the algorithms 

restarts until a local minimum is found. The best medoids are returned for the formation of a 

resulting partition. The time complexity of CLARANS is O(n2).   

1.3.1.2 Dimension Reduction Techniques 

The complexity and speed of a clustering algorithm are influenced by the number of instances in 

the dataset. However, objects in data mining could consist of hundreds of attributes. High 

dimensionality of the data set is another influential aspect and clustering in such high 

dimensional spaces requires more complexity and longer execution time [8, 12]. One approach to 

dimension reduction is projection. A dataset can be projected from a high dimensional space to a 

lower dimensional space. PCA (Principal Component Analysis) is one method used to reduce the 

dimensionality of a data set [14]. It provides simpler representation of data, reduction in memory 

and faster execution time. One approach to dimension reduction is subspace clustering. Subspace 

clustering seeks to find clusters in different subspaces within a dataset. Many dimensions are 

irrelevant in high dimensional data. Subspace clustering algorithms localize the search for 

relevant dimensions allowing them to find clusters that exist in multiple subspaces. CLIQUE is 

one of the algorithms proposed to find clusters within subspaces of a dataset [15]. CLIQUE 

combines density and grid based clustering. CLIQUE operates on high-dimensional data by not 
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operating all the dimensions at once but by processing a single dimension at the first step and 

then grows upward to the higher one. The last way to address the problem of dimension 

reduction is co-clustering. Traditional clustering focuses on only features while co-clustering 

focus on both data points and features. The Dual Regularized Co-Clustering (DRCC) [16] 

method based on seminonnegative matrix tri-factorization is a co-clustering algorithm. It 

generates a data graph and a feature graph to explore the geometric structure of data manifold 

and feature manifold.    

1.3.2 Multiple machine clustering techniques 

In this age of data explosion, parallel processing is essential to processing a massive volume of 

data in a timely manner. Due to the growth of data size and memory and processor 

advancements, single-machine clustering techniques with a single processor and a memory 

cannot handle the tremendous amount of data. Algorithms that can be run on multiple machines 

are needed. Unlike single-machine techniques, multiple machine clustering techniques divide the 

huge amount of data into small pieces. These small pieces of data can be loaded on different 

machines and the huge problem can be solved using the processing power of these machines. 

Parallel processing applications include conventional parallel applications and data-intensive 

applications. The conventional parallel applications assume that data can be fit into the memory 

of distributed machines. Data intensive applications are I/O bound and devote the largest fraction 

of the execution time to the movement of data. OpenMP, MPI [13], and MapReduce are common 

parallel processing models for computing data-intensive applications. In here, we only discuss 

the conventional parallel and MapReduce clustering algorithms. 
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Figure 2: The general framework of most parallel and MapReduce clustering. 

Both parallel and MapReduce clustering algorithms follow the general framework illustrated in 

Figure 2. Firstly, the input data are partitioned and distributed over different machines. Secondly, 

each machine performs local clustering on its own split of the input data. Thirdly, the 

information of machines is aggregated globally to produce global clusters for the whole data set. 

The global clusters are sent back to each machine as a start point for new local clustering. This 

process continues until the stop criteria have been met. Finally, the final results of the global 

clusters is generated. 

1.3.2.1 Parallel Clustering  

Three main strategies in the parallelism used in data mining algorithms can be identified as the 

following [10]: 1) Independent parallelism, the whole data is operated in each processor and no 

communication between processors. 2) Task parallelism, different algorithms are operated on 

each processor. 3) SPMD (Single Program Multiple Data) parallelism, the same algorithm is 

executed on multiple processors with different partitions. The results are exchanged in order to 

cooperate each other. The combination of tasks and SPMD parallelism with the master-slave 

architecture is the common strategy.  

Parallel Partitioning Clustering Algorithms 

The k-means algorithm is one of the most popular partitioning clustering algorithms. A parallel 
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implementation of k-means is introduced in [17]. The parallel K-means algorithm is developed 

on the message passing model of a network of workstations (NOWs). Beside parallel k-means, a 

parallel CLARANS algorithm using PVM (Parallel Virtual Machine) is introduced in [18]. PVM 

uses a master/slave paradigm. The master program can assign tasks to other slaves and the 

communication between computers is based on message-passing. 

Parallel Hierarchical Clustering Algorithm 

The network topology of processors and the splitting of data accessing have been used in the 

parallelization of hierarchical clustering algorithms. Parallel BIRCH [19] called PBRICH is a 

hierarchical clustering algorithm applied to the SPMD model with message-passing. PBIRCH 

divides the data equally into the processors and the k-means algorithm is applied in the initial 

stage. The k initial centroids are broadcasted to each processor and a CF-tree is constructed 

accordingly. The centroids of the local clusters are used to compute the global centroids. Each 

processor recalculates the centroids and the processes are repeated until it converges. In Figure 3, 

BIRCH scans the input data and builds the CF-tree. The initial CF-tree might not be accurate due 

to the skewed input order or the splitting effect by the page size. A tree condensing step might be 

applied to address this issue. The global clustering clusters all the sub-clusters in the leaf nodes 

which is done by an agglomerative hierarchical clustering algorithm. The clustering results 

reassigns all the data points based on the results by the global clustering step.   

 

 

Figure 3: The flow chart of BIRCH algorithm. 
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Parallel Density based Clustering Algorithm 

PDBSCAN [20] is a parallel version of the DSBSCAN algorithm. DSBSCAN is a density-based 

clustering algorithm. The main objective of density based clustering is the discovery of clusters 

of arbitrary shapes. PDBSCAN with master-slave configuration includes three steps. The first 

step divides the input data into several partitions and distributes them to different nodes. The 

second step concurrently clusters the partition using DBSCAN. The last step accumulates the 

local clusters and calculates the global clusters for the whole data.  

Parallel Graph-based Clustering Algorithm 

The goal of graph partitioning is to find the good cluster of vertices. The parallelization of 

METIS is ParMETIS which is a multilevel partitioning algorithm [21]. ParMETIS includes three 

phases. The first phase is the coarsening phase. It tries to find the maximal matching on the 

original graph such that the vertices that are matched create a small enough graph. The second 

phase is the partitioning phase. The coarsened graph from the previous phases is clustered in k-

way using the multilevel recursive bisection algorithm. A greedy algorithm is applied to project 

back the partitioning from the second phase to the original graph in the last phase. 

GPU based parallel clustering 

The use of GPU instead of CPU speeds up the computation in parallel computing. GPUs consiste 

of thousands of cores and CPUs only have several processing cores (see Figure 4). GPUs are 

much more powerful and faster than CPUs. A G-DBSCAN [22] is a GPU-based parallel 

algorithm. G-DBSCAN has two parallelized steps. A graph where the edges are created based on 

a predefined threshold is constructed in the first step. The second step uses the Breath-First 

Search (BFS) to traverse the graph to identify the clusters. The results shows that G-DBSCAN is 

112 times faster than DBSCAN.  
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Figure 4: Difference between CPU and GPU. CPU has several cores while GPU are consists of 

hundreds of cores. 

1.3.2.2 MapReduce based Clustering 

MapReduce is one of the most efficient big data solutions which enables to process a massive 

volume of data in parallel with many low-end computing nodes. This programming paradigm is 

a scalable and fault-tolerant data processing technique that was developed to provide significant 

improvements in large-scale data-intensive applications in clusters. MapReduce has gained 

significant momentum from industry and academia by virtue of its simplicity, scalability, and 

fault-tolerance [23].  

The MapReduce model hides the details of the parallel execution, which allows users to focus 

only on data processing strategies. The MapReduce model consists of two basic elements [24]: 

mappers and reducers. The idea of this programming model is to design mappers (or map 

function), which can be used to generate a set of intermediate key/value pairs. The reducer (or 

reduce function) are used as a shuffling or combining function to merge all of the intermediate 

values which are associated with the same intermediate key. The main aspect of the MapReduce 

algorithm is that if every map and reduce is independent of all other ongoing maps and reduces, 

then the operations can be run in parallel on different keys and lists of data.  



17 

  

The process of the MapReduce approach can be decomposed as follows: 1) Prepare input data: 

MapReduce utilizes the Google File System (GFS or HDFS) as an underlying storage layer to 

read input and store output [59]. GFS is a chunk-based distributed file system that supports fault-

tolerance by data partitioning and replication. The big data is divided into small chunk on 

different worker node. 2) The map step: the map function of each node is applied to local data 

and the output is written to a temporary storage space. 3) The sort and send step: the output from 

step 2) is sorted with key such that all data belonging to one key are located on the same node. 

The sorted results are sent to the reduce processors. 4) The reduce step: each group of output data 

(per key) is processed in parallel on each reduce node. The user-provided reduce function is 

executed once for each key value produced by the map step. 5) Produce the final output: The 

MapReduce system collects all of the reduce outputs and sorts them by key to produce the final 

output. The results are stored in the GFS.  

 

 

Figure 5: A general framework of a MapReduce system. 

MapReduce based Partitioning Clustering Algorithms 

PKMeans [25] is a distributed version of the k-means algorithm using the MapReduce 

framework to speed up and scale up the process. The PKMeans follows the general framework 
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illustrated in Figure 5. The data is implicitly partitioned in the distributed file system. The local 

clustering is performed in the map step using the k-means algorithm. The global clustering is 

performed in the merge and reduce step. The outputs of the reduce step are the centroids of 

clusters which are sent back to the map step for the next iteration. The process is iterated until it 

converges. The speed up and size up of PKMeans are near linear and the scale up is also good.  

MapReduce based DBSCAN 

MapReduce-based DBSCAN [26] is a density-based clustering algorithm implemented using 

MapReduce. Existing parallel DBSCAN have three major drawbacks. First, they cannot properly 

balance the load among parallel tasks. Second, the scalability of these algorithms is limited 

because all critical sub procedures are not parallelized. Third, these algorithms are not less 

portable to emerging parallel processing paradigms because they are not designed for shared-

nothing environments. In MR-DBSCAN, all the critical sub-procedures are parallelized to ensure 

scalability. A novel cost-based data partitioning method is proposed to achieve desirable load 

balancing on heavily skewed data. Results show that the MR-DBSCAN has good speed up and 

scale up. It is a lot faster than the exiting parallel DBSCAN.  

MapReduce based Evolutionary Algorithm 

The inherent parallel nature of evolutionary algorithms makes them optimal candidates for 

parallelization. A scalable MR-CPSO algorithm using the MapReduce framework to overcome 

the inefficiency of PSO clustering for large data sets is proposed in [27]. MR-CPSO algorithm 

using the MapReduce methodology has been successfully parallelized. MR-CPSO is a 

partitioning clustering algorithm similar to the k-means approach. The clustering task in MR-

CPSO is formulated as an optimization problem to obtain the best solution based on the 

minimum distances between the data points and the cluster centroids. Another approach based on 
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a Glowworm Swarm Optimization Clustering Algorithm using MapReduce was introduced in 

[28]. The experimental results showed that the algorithm scales very well with increasing data 

set sizes and achieves a very close to linear speedup while maintaining the clustering quality. 

MapReduce based Fuzzy C-Means Algorithm 

A fuzzy clustering algorithm was implemented using the MapReduce paradigm in [29]. A 

validity analysis was conducted in order to show the correct working of the implementation as 

well as to evaluate the clustering results. A scalability analysis was conducted to demonstrate the 

performance of the parallel fuzzy clustering algorithm implementation with increasing number of 

computing nodes used. 

1.4 Application  

1.4.1 Image segmentation 

Image segmentation is a necessary first process in image understanding and computer vision by 

correctly classifying the pixels of an image in decision-oriented applications [30]. The essential 

goal of image segmentation is to partition an image into uniform and homogeneous attribute 

regions based on some likeness measure, such as gray level, color, tone, texture, etc. Due to the 

variety and complexity of images, image segmentation is still a very challenging research topic. 

Basically, segmentation approaches for images are based on the discontinuity and similarity of 

image intensity values. Discontinuity is an approach which partitions an image based on abrupt 

changes. According to the predefined criteria, the similarity approach is based on partitioning an 

image into similar regions. 

Big data image segmentation is a strategy in image analysis, which emerged especially in the 

medical area [31]. Different algorithms for big data image segmentation have been executed on 

the parallel computing strategy to achieve effective results. Researchers have proposed a variety 
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of techniques to tackle the challenging problem of image segmentation. Because of the 

complexity of image segmentation and given that only partial prior knowledge is provided, the 

segmentation result would be poor if a supervised method was adopted. Thus, the unsupervised 

method is a better choice to solve such a problem. Clustering as an unsupervised learning 

strategy has been used for solving automatic grouping of images and image segmentation. In 

addition, clustering can also organize and retrieve image databases in an efficient way. 

Partitioning clustering is the most popular technique for big data image segmentation due to the 

simplicity of implementation. In [32], a distributed c-means algorithm is proposed for big data 

image segmentation and has been applied for Magnetic Resonance Images (MRI) segmentation. 

The algorithm is implemented on a parallel and distributed machine based on mobile agents. The 

approach is implemented on a multi-agent platform. The proposed algorithm is executed on 

Mobile Classification Agents on different nodes on their data at the same time. The results are 

provided to the Mobile Host Agent to further compute the global results until the stopping 

criteria have been met. The output of the segmented images is provided by the Mobile 

Classification Agents. The algorithm is applied on MRI cerebral image and the results show that 

the complexity of the parallel program has been reduced using the multi-agent platform. In 

addition, the approach overcomes the big data challenges and offers a high-performance 

computing tool using a multi-agent system.  

1.4.2 Load Balancing in Parallel Computing 

In the big data era, the rapid and scalable deployment of virtual Web stores, media outlets, and 

other on-line sites or services is a problem of considerable practical interest. In a cloud-based 

architecture, a set of hosted resources such as processors, operating systems, software and other 

components can be combined or strung together to form virtual machines. The key is how to 
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allocate the resources to support these virtual machine and reduce the response time. Load 

balancing [33] is an important problem of heterogeneous computer networks in cloud computing. 

The main concern of load balancing is how to distribute resources among the users such that no 

node is overloaded or sitting idle. Traditional parallel computing and grid computing 

environments load balancing algorithms can be classified into three ways [34]: 

1) Static load balance algorithms: these algorithms are suitable for small distributed 

environments. The decisions related to the balancing of the load will be made at compile 

time when resource requirements are estimated. The advantage of static load balancing 

algorithms is the simplicity with regards to both implementation and overhead.  

2) Dynamic load balance algorithms: the distribution of work load for dynamic load 

balancing algorithms is changed at run-time. The communication delays and execution 

time have been reduced since they use current load information when making distribution 

decisions.  

3) Mixed load balance algorithms: These algorithms are a mix of static and dynamic load 

balance algorithms. They focus on how to symmetrically assign computing tasks and how 

to reduce communication cost of symmetrical distributed computing nodes. 

In a distributed system environment, load balancing algorithms focus on reducing the job 

response time by distributing the total load of system. There are many load balancing algorithms 

available. Depending on the requirements, clustering algorithms play an important role in 

realizing cloud computing to implement the load balancing of accessing resources. Active 

clustering [35] is a clustering based dynamic load balancing algorithm. It groups similar nodes 

together using local re-wiring and then work on these clusters. It uses the concept of match 

maker node to create a cluster. The active clustering adopts the iterative nature of hierarchical 
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clustering algorithms. In the iterative process, the algorithm assumes there are two types of 

nodes. The first node selects a matchmaker node, which is of a different type. This matchmaker 

node connects with its neighbor node, which is of the same type as the first node. The process 

repeats until the matchmaker node gets detached. The performance of the system is enhanced 

with high resources thereby increasing the throughput by using these resources effectively. 

However, the algorithm is degraded due to the increase of system diversity. Hence, there is 

strong need for an efficient load balancing mechanism. 

1.4.3 Genetic Mapping 

Genetic maps are important components in plant science. A genetic map serves many practical 

biological purposes and is a key tool in both classical and modern plant research. A genetic map 

is a list of genetic elements ordered according to their co-segregation patterns [36]. The essential 

concept of a genetic map is the linkage group. The linkage group collects genetic markers that 

are found on a single chromosome. The number of linkage groups equals the number of 

chromosomes in the species. Genetic markers are clustered into the linkage groups. In order to 

group genetic makers into linkage groups, it needs to compute pairwise similarities between all 

pairs of markers and then use various standard clustering algorithms for clustering. A similarity 

matrix with the similarity scores is an input for clustering algorithms with a complexity of O(m2) 

for m markers. 

The bottleneck for genetic mapping therefore is how to efficiently find the linkage groups using 

clustering algorithms. Moreover, conventional genetic mapping tools were designed for small 

data sets and can only handle up to 10,000 markers. In [37], a fast clustering algorithm called 

BubbleCluster is proposed to exploit the structure of genetic makers. The BubbleCluster 

algorithm consists of three phases. The first phase is the most important. It exploits the structure 
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of genetic linkage groups to quickly cluster high-quality makers as a skeleton. The second phase 

uses the skeleton obtained from the first phase to cluster more noisy low-quality makers. Small 

clusters found from previous phases are merged with large clusters. This algorithm exploits the 

underlying linear structure of chromosomes to avoid the quadratic pairwise calculation.  

1.4.4 Community Detection 

Community detection is a useful tool to partition the nodes of an observed network into groups. 

A “network community” is typically thought of as a group of nodes such that the connection of 

the nodes is dense within groups but sparser between them [38]. Community detection is 

potentially very useful. A good partition can be considered as a hint of underlying semantic 

structure or possible mechanisms of network formation. Researchers in computer science, 

mathematics, physics, statistics and bioinformatics use community detection algorithms to better 

understanding the large-scale structure of the interaction between groups in social and biological 

systems. For example, knowing the groups or communities within a social network such as 

LinkedIn can be used to infer about the trends of collaboration between individuals in industry as 

well as academia. It helps to better understand the function of key biological processes by 

uncovering the nature of interactions between groups of proteins in a Protein-Protein Interaction 

network. Hence, community detection has received a great deal of attention in real-world graphs 

such as large social networks, web graphs and biological networks.  

Community detection is similar to clustering where both use a data mining technique to partition 

a network into groups based on the similarity measurement. In [39], a fast parallel modularity 

optimization algorithm (FPMQA) for community detection is introduced. An interesting social 

network called Interest Network links two IDs if both IDs have participated to the discussion 

about one or more topics. The initial network is updated using the attitude consistency of the 
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connected ID pairs. FPMQA is then used to conduct community detection. FPMQA assumes that 

each node is a separate community in a network that finds the pairs of communities with the 

local maximum. FPMQA uses the parallel technique to merge the corresponding community 

pairs into one community. Compared to conventional approaches, FPMQA reduces the running 

time of community detection and uses the reliable ground truths to evaluate detected 

communities.  

1.5. Conclusion Remarks 

In this chapter, we reviewed the literature about clustering in big data and the corresponding 

clustering algorithms. Clustering algorithms are categorized into six classifications: partitioning, 

hierarchical, density based, model-based, grid-based algorithms and evolutionary algorithms. 

The most popular clustering algorithms are partitioning and hierarchical algorithms and many of 

the parallel versions of the algorithms have been developed. The traditional single-machine 

techniques are not powerful enough to handle the huge volume of data accumulated nowadays. 

Parallelism in clustering algorithms is important for multi-machine techniques. Parallel 

clustering is potentially useful for big data clustering. However, the complexity of implementing 

such algorithms is a challenge. Hence, MapReduce has gained significant momentum from 

industry and academia by virtue of its simplicity, scalability, and fault-tolerance. Big data 

clustering as an essential task in big data mining and is not limited to image segmentation, load 

balancing, genetic maps and community detection.  
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