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ABSTRACT
Given a set of training data, nearest neighbor classification
predicts the class value for an unknown tuple X by searching the
training set for the k nearest neighbors to X and then classifying
X according to the most frequent class among the k neighbors.
Each of the k nearest neighbors casts an equal vote for the class
of X. In this paper, we propose a new algorithm, Podium
Incremental Neighbor Evaluator (PINE), in which nearest
neighbors are weighted for voting. A metric called HOBBit is
used as the distance metric, and a data structure, the P-tree*, is
used for efficient implementation of the PINE algorithm on
spatial data. Our experiments show that by using a Gaussian
podium function, PINE outperforms the k-nearest neighbor
(KNN) method in terms of classification accuracy for spatial
data. In addition, in the PINE algorithm, all the instances are
potential neighbors so that the value of k need not be pre-
specified as in KNN methods. By assigning high weights to the
nearest neighbors and low (even zero) weights to other
neighbors, high classification accuracy can be achieved.
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1. INTRODUCTION
Nearest neighbor classification is a lazy classifier. Given a set
of training data, a k-nearest neighbor classifier predicts the class
value for an unknown tuple X by searching the training set for
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the k nearest neighbors to X and then assigning to X the most
common class among its k nearest neighbors.

In classical k-nearest neighbor (KNN) methods, each of the k
nearest neighbors casts an equal vote for the class of X. We
suggest that the accuracy can be increased by weighting the vote
of different neighbors. Based on this, we propose an algorithm,
called Podium Incremental Neighbor Evaluator (PINE), to
achieve high accuracy by applying a podium function on the
neighbors.

The idea of distance weighting is not new. For example, the
concept of a “radial basis function” [7] is related to the idea of a
podium function. However, to the best of our knowledge,
applying the podium function to nearest neighbor classification
is new.

Unlike other nearest neighbor classifiers, in PINE, no sub-
sampling is done and no limit is placed on the number of
neighbors, as in classical k-nearest neighbor classification
techniques. The podium or distance weighting function (which
can be user parameterized) establishes a riser height for each
step of the podium weighting function as the distance from the
sample grows. This approach gives users maximum flexibility
in choosing just the right level of influence for each training
sample in the entire training set.

Different metrics can be defined for “closeness” of two data
points. In this paper, we use a metric, called HOBBit (High
Order Basic Bit similarity), for spatial data. In addition, we use
a data structure, the Peano Count Tree (P-tree), for efficient
discovery of nearest neighbors, without scanning the database.
P-trees [1,2,3] are a data mining-ready representation of integer-
valued data. Count information is maintained to quickly
perform data mining operations. P-trees represent bit
information that is obtained from the data through a separation
into bit planes. Their multi-level structure is chosen so as to
achieve high compression. A consistent multi-level structure is
maintained across all bit planes of all attributes. This is done so
that a simple multi-way logical AND operation can be used to
reconstruct count information for any attribute value or tuple.

The rest of the paper is organized as follows. In Section 2, we
review the P-tree structure. In Section 3, we introduce the



HOBBit metric and detail our PINE algorithm. Performance
analysis is given in Section 4. Section 5 concludes the paper.

2. THE P-TREE STRUCTURE REVIEW
We use a structure, called a Peano Count Tree (P-tree), to
represent the spatial data. We first split each attribute value into
bits. For example, for image data, each band is an attribute, and
the value is represented as a byte (8 bits). The file for each
individual bit is called a bSQ file. For an attribute with m-bit
values, we have m bSQ files. We organize each bSQ bit file, Bij
(the file constructed from the jth bits of ith attribute), into a P-
tree. Let’s look at an example in Figure 1.

Figure 1. P-tree and PM-tree

In this example, 39 is the count of 1’s in the entire image, called
root count. The numbers at the next level, 16, 8, 15 and 16, are
the 1-bit counts for the four major quadrants. Since the first and
last quadrant is made up of entirely 1-bits and 0-bits respectively
(called pure1 and pure0 quadrant respectively), we do not need
sub-trees for these two quadrants. This pattern is continued
recursively. Recursive raster ordering is called the Peano or Z-
ordering in the literature – therefore, the name Peano Count
trees. The process will definitely terminate at the “leaf” level
where each quadrant is a 1-row-1-column quadrant.

For each band, assuming 8-bit data values, we get 8 basic P-
trees, one for each bit position. For band Bi we will label the
basic P-trees, Pi,1, Pi,2, …, Pi,8, where Pi,j is a lossless
representation of the jth bit of the values from the ith band.
However, the Pi,j provides much more information and is
structured to facilitate many important data mining processes.

For efficient implementation, we use a variation of P-trees,
called PM-tree (Pure Mask tree), in which mask instead of count
is used. In the PM-tree, 3-value logic is used, i.e, 11 represents
a pure1 quadrant, 00 represents a pure0 quadrant and 01
represents a mixed quadrant. To simplify, we use 1 for pure1, 0
for pure0, and m for mixed. This is illustrated in the 3rd part of
Figure 1.

P-tree algebra contains operators, AND, OR, NOT and XOR,
which are the pixel-by-pixel logical operations on P-trees [3].
The NOT operation is a straightforward translation of each
count to its quadrant-complement. The AND and OR operations
are shown in Figure 2.

Figure 2. P-tree Algebra (AND and OR)

The basic P-trees can be combined using simple logical
operations to produce P-trees for the original values (at any level
of precision, 1-bit precision, 2-bit precision, etc.). We let Pb,v

denote the P-tree for attribute, b, and value, v, where v can be
expressed in any bit precision. Using the 8-bit precision for
values, Pb,11010011 can be constructed from the basic P-trees as:

Pb,11010011 = Pb1 AND Pb2 AND Pb3′ AND Pb4 AND Pb5′ AND
Pb6′ AND Pb7 AND Pb8.

Where ′ indicates the NOT operation. The AND operation is
simply the pixel-wise AND of the bits.

Similarly, the data in the relational format can be represented as
P-trees also. For any combination of values, (v1,v2,…,vn),
where vi is from attribute-i, the quadrant-wise count of
occurrences of this combination of values is given by:

P(v1,v2,…,vn) = P1,v1 AND P2,v2 AND … AND Pn,vn

P-trees are implemented in an efficient way which facilitate fast
P-tree operations and considerable saving of space. More details
can be found in [3, 9].

3. DISTANCE-WEIGHTED (PODIUM)
NEIGHBOR CLASSIFICATION USING P-
TREES
In classical k-nearest neighbor classification techniques, there is
a limit placed on the number of neighbors. In our distance-
weighted neighbor classification approach, the podium or
distance weighting function (which can be user parameterized)
establishes a riser height for each step of the podium weighting
function as the distance from the sample grows. This approach
gives users maximum flexibility in choosing just the right level

P-tree-1: m
______/ / \ \______

/ / \ \
/ / \ \

1 m m 1
/ / \ \ / / \ \

m 0 1 m 1 1 m 1
//|\ //|\ //|\

1110 0010 1101

P-tree-2: m
______/ / \ \______

/ / \ \
/ / \ \

1 0 m 0
/ / \ \

1 1 1 m
//|\

0100

AND-Result: m
________ / / \ \___

/ ____ / \ \
/ / \ \

1 0 m 0
/ | \ \

1 1 m m
//|\ //|\

1101 0100

OR-Result: m
________ / / \ \___

/ ____ / \ \
/ / \ \

1 m 1 1
/ / \ \

m 0 1 m
//|\ //|\

1110 0010

1 1 1 1 1 1 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 1 1 1 0 0 0 0

39
____________/ / \ \___________

/ _____/ \ ___ \
16 ____8__ _15__ 0

/ / | \ / | \ \
3 0 4 1 4 4 3 4

//|\ //|\ //|\

1110 0010 1101

m
_____________/ / \ \____________

/ ____/ \ ____ \
1 ____m__ _m__ 0

/ / | \ / | \ \
m 0 1 m 1 1 m 1

//|\ //|\ //|\
1110 0010 1101



of influence for each training sample in the entire training set.
The real question is, can this level of flexibility be offered
without imposing a severe penalty with respect to the speed of
the classifier. Traditionally, sub-sampling, neighbor-limiting
and other restrictions are introduced precisely to ensure that the
algorithm will finish its classification in reasonable time (or at
all!). The use of the compressed, data-mining-ready data
structure, the P-tree, in fact, makes PINE even faster than
traditional methods. This is critically important in classification
since data are typically never discarded and therefore the
training set will grow without bound. The classification
technique must scale well or it will quickly become unusable in
this setting. PINE scales well since its accuracy increases as the
training set grows while its speed remains very reasonable (see
the performance study below). Furthermore, since PINE is lazy
(does not require a training phase in which a closed form
classifier is pre-built), it does not incur the expensive delays
required for rebuilding a classifier when new training data
arrives. Thus, PINE gives us a faster and more accurate
classifier.

Before explaining how distance-weighted neighbor
classification (Podium Incremental Neighbor Evaluator or
PINE) using P-trees works, we give an overview of the
technique of k-nearest-neighbor classification. In k-nearest
neighbor (KNN) the basic idea is that the tuples that most likely
belong to the same class are those that are similar in the other
attributes. This continuity assumption is consistent with the
properties of a spatial neighborhood.

Based on some pre-selected distance metric or similarity
measure, such as Euclidean distance, classical KNN finds the k
most similar or nearest training samples to an unclassified
sample and assigns the plurality class of those k samples to the
new sample [5, 6]. The value for k is pre-selected by the user
based on the accuracy required (usually the larger the value of k,
the more accurate the classifier) and the delay time required for
classifying with that k-value (usually the larger the value of k
the slower the classifier). The steps of the classification process
are:

1) Determine a suitable distance metric.
2) Find the k nearest neighbors (NNs) using the selected distance

metric.
3) Find the plurality class of the k-nearest neighbors (voting on

the class labels of the NNs).
4) Assign that class to the sample to be classified.

We use a new HOBBit distance (see next section), which
provides an efficient method of computation based on P-trees.
Instead of examining individual training samples to find the
nearest neighbors, we start our initial neighborhood of the target
sample within a specified distance in the feature space based on
this metric, and then successively expand the neighborhood area
until there are at least k tuples in the neighborhood set.

Of course, there may be more boundary neighbors equidistant
from the sample than are necessary to complete the k nearest
neighbor set, in which case, one can either use the larger set or
arbitrarily ignore some of them. Other methods find the exact k
nearest neighbor set, since that is easiest using traditional
techniques although it is clear that allowing some samples at that
distance to vote and not others, will skew the result. Instead,
the P-tree-based KNN approach [4] builds a closed nearest

neighbor set (closed-KNN), that is, we include all of the
boundary neighbors. The inductive definition of the closed-KNN
set is given below.

(a) If x ∈ KNN, then x ∈ closed-KNN
(b) If x ∈ closed-KNN and d(T,y) ≤ d(T,x), then y ∈ closed-

KNN, where, d(T,x) is the distance of x from target T.
(c) Closed-KNN does not contain any tuple which cannot be

produced by steps a and b.

Experimental results [4] show closed-KNN yields higher
classification accuracy than KNN does. If there are many tuples
on the boundary, inclusion of some but not all of them skews the
voting mechanism. The P-tree implementation requires no extra
computation to find the closed-KNN. Our neighborhood
expansion mechanism automatically includes the entire
boundary of the neighborhood. P-tree algorithms avoid the
examination of individual data points, which improves the
classification efficiency.

3.1 Higher Order Basic bit (HOBBit)
distance
For two data points, X = <x1, x2, x3, …, xn-1> and Y = <y1, y2,
y3, …, yn-1>, the Euclidean similarity function is defined as
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The HOBBit [4] metric measures distance based on the most
significant consecutive bit positions starting from the left (the
highest order bit). Similarity or closeness is of interest. When
comparing two values bitwise from left to right, once a
difference is found, any further comparisons are not needed.

The HOBBit similarity between two integers A and B is defined
by

SH(A, B) = max{s | 0 ≤ i ≤ s ⇒ ai = bi} … (eq. 1 )

where ai and bi are the ith bits of A and B respectively.

The HOBBit distance between two tuples X and Y is defined by

( ) ( ){ }max ,yxm - SX,Yd iiH

1n

1i
H

−

=
= … (eq. 2)

where m is the number of bits in binary representations of the
values; n - 1 is the number of attributes used for measuring
distance (the nth being the class attribute); and xi and yi are the ith

attributes of tuples X and Y. The HOBBit distance between two
tuples is a function of the least similar pairing of attribute values
in them.

From the experiments, we found that HOBBit distance is more
natural for spatial data than other distance metrics.



3.2 Closed-KNN using P-trees
To find the closed KNN set, first we look for the tuples which
are identical to the target tuple in all 8 bits of all bands, i.e. the
tuples, X, having distance from the target T, dH(X,T) = 0. If, for
instance, t1=105 (01101001b = 105d) is a target attribute value,
the initial interval of interest is [105, 105] ([01101001,
01101001]). If over all tuples the number of matches is less
than k, we compare attributes on the basis of the 7 most
significant bits, not caring about the 8th bit. The expanded
interval of interest would be [104,105] ([01101000, 01101001]
or [0110100-, 0110100-]). If k matches still haven’t been found,
removing one more bit from the right gives the interval [104,
107] ([011010--, 011010--]). Continuing to remove bits from
the right we get intervals, [104, 111], then [96, 111] and so on.

This process is implemented using P-trees as follows. Pi,j is the
basic P-tree for bit j of band i and P′ i,j is the complement of Pi,j.
Let, bi,j be the jth bit of the ith band of the target tuple, and for
implementation purposes let the representation of the P-tree
depend on the value of bij. Define:

Pti,j = Pi,j, if bi,j = 1,
= P′ i,j, otherwise.

Then the root count of Pti,j is the number of tuples in the training
dataset having the same value as the jth bit of the ith band of the
target tuple. Define:

Pvi,1-j = Pti,1 & Pti,2 & Pti,3 & … & Pti,j, … (eq. 3)

where & is the P-tree AND operator and n is the number of
bands. Pvi,1-j counts the tuples having the same bit values as the
target tuple in the higher order j bits of ith band. Then a
neighborhood P-tree can be formed as follows:

Pnn(j) = Pv1,1-j & Pv2,1- j & Pv3,1- j & … & Pvn-1,1- j … (eq. 4)

We calculate the initial neighborhood P-tree, Pnn(8), matching
exactly in all bands, considering 8-bit values. Then we calculate
Pnn(7), matching in 7 higher order bits; then Then Pnn(6) and
so on. We continue as long as the root count of Pnn(j) is less
than k. Let us denote the final Pnn(j) by Pcnn. Pcnn represents
the closed-KNN set and the root count of Pcnn is the number of
the nearest tuples. A 1 bit in Pcnn for a tuple means that the
tuple is in the closed-KNN set. For the purpose of classification,
we don’t need to consider all bits in the class band. If the class
band is 8 bits long, there are 256 possible classes. Instead, we
partition the class band values into fewer, say 8, groups by
truncating the 5 least significant bits. The 8 classes are 0, 1, 2,
…, 7. Using the leftmost 3 bits we construct the value P-trees
Pn(0), Pn(1), …, Pn(7). The P-tree Pcnn & Pn(i) represents the
tuples having a class value i that are in the closed-KNN set,
Pcnn. An i, which yields the maximum root count of Pcnn &
Pn(i) is the plurality class; that is

predicted class ( )( ){ }iPPcnn n
i

&RCmaxarg= … (eq. 5)

where, RC(P) is the root count of P. More details about closed-
KNN can be found in [4].

3.3 The Distance Weighted Nearest Neighbor
(Podium Incremental Neighbor Evaluator or
PINE) Method using P-trees

The continuity assumption of KNN tells us that tuples that are
more similar to a given tuple have more influence on
classification than tuples that are less similar. Therefore giving
more voting weight to closer tuples than distant tuples increases
the classification accuracy. Instead of considering the k nearest
neighbors, we include all of the points, using the largest weight,
1, for those matching exactly, and the smallest weight, 0, for
those furthest away. Many weighting functions which decreases
with distance, can be used (e.g., Gaussian, Kriging, etc).
Remaining consistent with the neighborhood rings (Figure 3)
using the HOBBit distance, we can apply, for instance, a linear
podium function (Figure 4), which decreases step-by-step with
distance.

Figure 3. Neighborhood rings using HOBBit

Figure 4. Linear podium function

Note that the HOBBit distance metric is ideally suited to the
definition of neighborhood rings, because the range of points
that are considered equidistant grows exponentially with
distance from the center. Adjusting weights is particularly
important for small to intermediate distances where the podiums
are small. At larger distances where fine-tuning is less important
the HOBBit distance remains unchanged over a large range, i.e.,
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podiums are wider. Ideally, the 0-weighted ring should include
all training samples that are judged to be too far away (by a
domain expert) to influence class.

We number the rings from 0 (outermost) to m (innermost). Let
wj be the weight associated with the ring j. Let cij be the number
of neighbor tuples in the ring j belonging to the class i. Then the
total weight vote by the class i is given by:

( ) ∑
=

=
m

0j
ijjcwiV … … … (eq. 6)

This can easily be transformed to:
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Let circle j be the circle formed by the rings j, j+1, …, m, that
is, the ring j including all of its inner rings. Referring to eq. 4,
the P-tree, Pnn(j), represents all of the tuples in the circle j.
Therefore, {Pnn(j) & Pn(i)} represents the tuples in the circle j
and class i; Pn(i) is the P-tree for class i. Hence:
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An i which yields the maximum weighted vote, V(i), is the
plurality class or the predicted class; that is:

predicted class ( ){ }iV
i

maxarg= … … … (eq. 10)

4. PERFORMANCE ANALYSIS
We have performed experiments to evaluate PINE on the real
data sets including the aerial TIFF image (with Red, Green and
Blue band reflectance values), moisture, nitrate, and yield map
of the Oaks area in North Dakota. In these datasets yield is the
class label attribute. The data sets are available at [8]. We
formed test set and training set of equal size and tested KNN
with Manhattan, Euclidean, Max, and HOBBit distance metrics;
and closed-KNN with the HOBBit metric, and Podium
Incremental Neighbor Evaluator (PINE). In PINE, HOBBit was
used as the distance function and the Gaussian function was
used as the podium function. We specify variance σ as 24, and
the function is exp(-(22*d) / (2*σ2)), where d is the HOBBit
distance. Therefore, the mapping is given in Table 1.

Table 1. Gaussian weighs as the function of HoBBit distance

HOBBit
distance

0 1 2 3 4 5 6 7

Gaussian
weigh

1.00 1.00 0.97 0.88 0.61 0.14 0.00 0.00

The accuracies of different implementations are given in Figure
5 for one dataset. We got quite similar results for other spatial

datasets, which are consistent with our analysis about the
properties of spatial data.

Accuracy Comparison for KNN, closed-KNN
and PINE
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We see that PINE performs better than closed-KNN as we
expected. Especially when the training set size increases, the
improvement of PINE over closed-KNN is more apparent. In
our previous work [16], we have already explained the
improvement of closed-KNN over KNN using various metrics.
All these classifiers work well compared to raw guessing, which
is 12.5% in this data set with 8 class values.
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In terms of speed, from Figure 6, we see that there is some
additional time cost of using PINE, however, this additional cost
is relatively small. Notice that both size and classification time
are plotted in logarithmic scale. We observe that both closed-
KNN and PINE are much faster than KNN using any metric.
On the average, PINE is eight times faster than the KNN, and
closed-KNN is 10 times faster. Both PINE and closed-KNN
increase at a lower rate than KNN methods do when the training
set size increases.

5. CONCLUSIONS
In this paper, we propose a Podium Incremental Neighbor
Evaluator (PINE), for classification on spatial data. We use the
HOBBit metric and P-tree data structure for efficient
implementation of PINE. Performance analysis shows that
PINE outperforms KNN methods in terms of accuracy and
speed of classification on spatial data.

PINE is particularly useful for classification on data streams. In
data streams, new data arrives very quickly, so both speed and
accuracy are important issues. Achieving high speed using P-
trees, and high accuracy using the Podium Incremental Neighbor
Evaluator (PINE) provides a classification method that is well
suited to the classification of stream data. Besides spatial and
stream data, this work has potential applications in other areas,
such as DNA micro array data and medical image analysis.
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