Exploring worlds of more than three dimensions

Anne Denton
Computer Science, NDSU
What are dimensions?

- For the purpose of this workshop
 - Number of independent attributes (coordinates)
- What does that have to do with 2-dim planes and 3-dim spaces?
 - In the plane, we need two coordinates to specify a location
 - In a 3-dim space we need three coordinates
Example: 2-dim Maze Game

- Objective
 - Get from bottom left to top right
- Maximum number of steps: 2
Acceptable Moves

- Move one or two steps
- You may go around corners
- No diagonals
- Fancy name:
 - Manhattan distance
Solution to 2-dim Maze

- Possible path
- Others are possible
Maze in numbers

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Interpretation

- What could those numbers be?
 - Geographic location
 - Age and height of a person
 - Components of color (next)
- Do not have to be what most people think when you say “dimension”
Colors

- All colors can be created by mixing 3 components
- Here colored lights are added

http://www.fas.harvard.edu/~scidemos/LightOptics/ColorMixing/ColorMixing06.jpg
Color Interpretation

- Two basic colors
 - x-coordinate is red
 - y-coordinate is green
- Maze challenge
 - How do you find a sequence of colors with adjacent colors being “not too different”?
 - Mathematically both problems equivalent
Maze using Colors

Start 0

Goal

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Shortest Path for 2-dim Colors
3-dim Example

- Numbers represent additional dimension
- Now 3 steps are allowed
Acceptable Moves in 3-dim

- As before
 - Distance has to be smaller or equal than maximum (3)
- New
 - Difference in 3rd dimension counts as one step
Solution to 3-dim Maze

- Note how solution differs although x and y coordinates are same
3-dim Maze in Numbers

Start

\[
\begin{array}{|c|c|c|c|}
\hline
x & y & z \\
\hline
0 & 0 & 0 \\
0 & 2 & 3 \\
0 & 4 & 2 \\
1 & 1 & 1 \\
1 & 3 & 1 \\
2 & 5 & 2 \\
3 & 1 & 0 \\
3 & 4 & 3 \\
4 & 0 & 1 \\
4 & 3 & 4 \\
4 & 4 & 1 \\
5 & 0 & 0 \\
5 & 2 & 5 \\
5 & 5 & 5 \\
\hline
\end{array}
\]
3-d Maze using Color

Start -> Goal

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Shortest Path for Colors
How about 4 Dimensions?

- The two numbers are independent
- Now we allow 4 steps
Acceptable Moves in 4-dim

- Now both additional dimensions are added to the distance.
- Maximum distance is now 4 steps.
Solution to 4-dim Maze

- Note how x and y become increasingly unimportant for the overall path
Can we do 4-dim Colors?

- Unfortunately human eyes only have three different receptors
 - Red, Green, and Blue
- So we can only represent 3 independent pieces of information
- Any idea how we could visualize 4 dimensions?
Combining Color and Position

- How many colors do we need to represent 4 dimensions?
Combining Color and Position

- Note how the color helps you find the path
Color and Position

- We have seen that x, y, red, and green can be used to visualize a 4-dim problem.
- How many dimensions would you get by combining x and y with complete color information?
- How about complete spacial and color information?
How Common are Problems in Four and More Dimensions?

- I commonly work with 10-10,000 dimensions
- Any information that is known about a person or a thing could be another dimension
 - Some of them are yes/no types of information
 - Similar ideas and techniques
- How many things are known about you?
Suggestions Please

• What do you think is easy in high dimensions?
• What is difficult?
Some Easy Things

- Doing distance calculations
 - Not just Manhattan distance
 - Standard Euclidean distance can also easily be generalized to higher dimensions
- Calculating averages, etc.
- Many mathematical algorithms don’t depend much on dimensionality
So is everything easy?

- Visualization is difficult
- We saw that anything with more than 2 or 3 dimensions becomes difficult to visualize
- Some problems that one may not think of
 - In high dimensions there are few points very close and few points very far
 - Most are somewhere in-between
Example Application

- Understanding data
- Grouping objects
- Predicting something about objects
- Finding patterns in data
- Also called: Data mining
Other Applications?

- Physical sciences / Engineering
 - Velocity components may be considered as dimensions
 - Or every position and velocity of every particle in a system may be a dimension!
- Does not end there
 - Physicists sometimes even consider infinitely many dimensions!
Summary

- Working with many dimensions is not so different from working with two or three.
- There are some exciting additional challenges.
- You showed that you can do it!