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ABSTRACT

The rate of people dying from medical errors in hospitals each year is very high. Errors that frequently occur
during the course of providing health care are adverse drug events and improper transfusions, surgical injuries

andwrong-site surgery, suicides, restraint-related injuries or death, falls, burns, pressure ulcers, and mistaken

patient identities. Medical decision support systems play an increasingly important role in medical practice.

By assisting physicians in making clinical decisions, medical decision support systems improve the quality
of medical care. Two approaches have been investigated for the prediction of medical outcomes: “hours of
ventilation” and the “mortality rate” in the adult intensive care unit. The first approach is based on neural
networks with the weight-elimination algorithm, and the second is based on genetic programming. Both ap-

proaches are compared to commonly used machine learning algorithms. Results show that both algorithms

developed score well for the outcomes selected.

Keywords: Genetic Algorithms, Genetic Programming, Hours of Ventilation, Intensive Care, Machine
Learning Algorithms, Mortality, Neural Networks
INTRODUCTION the course of providing health care are adverse

A study of the health care system in the United
States reported that at least 44,000 people, and
perhaps as many as 98,000 people, die in hos-
pitals each year as a result of medical errors,
many of which could have been prevented.
Medical errors can be defined as the failure of
a planned action to be performed as intended
or the use of the wrong action to achieve an
aim. Problems that frequently occur during
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drug events and improper transfusions, surgi-
cal injuries and wrong-site surgery, suicides,
restraint-related injuries or death, falls, burns,
pressure ulcers, and mistaken patient identities.
High error rates with serious consequences are
most likely to occur in intensive care units,
operating rooms, and emergency departments
(Institute of Medicine, 1999).

Medical decision support systems play an
increasingly important role in medical practice
to address the above stated problems. By assist-
ing physicians with making clinical decisions,
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medical decision support systems are expected
to improve the quality of medical care (Wennber
& Cooper, 1999).

Sim et al. (2001) define clinical or medical
decision support systems as software designed
to be a direct aid to clinical decision-making,
where the characteristics of an individual pa-
tient are matched to a computerized clinical
knowledge base; patient-specific assessments
or recommendations are then presented to the
clinician and/or the patient for a decision. Nu-
merous medical decision support systems have
been developed to assist medical practice. In
2001, Kaplanreviewed 27 clinical decision sup-
port systems reported in the literature (Kaplan,
2001), while Metaxiotis etal. (2000) list 13 well
known systems developed for diagnosis, test
result interpretation and knowledge manage-
ment. The range of clinical decision support
systems spans the realms of home health care,
to enterprise-wide systems, to medical research
laboratories. When developing a new CDSS,
several factors need to be considered to increase
the likelihood that it will be integrated into
the health care delivery in a variety of clinical
environments. These factors need to be applied
atall stages of the development life cycle of the
CDSS. The criteria forasuccessful deployment
of a CDSS can be divided into three main areas:
(1) The data entry and the decision algorithms;
(i) the human-computer interaction, which
includes the data acquisition and the manner in
which informationisrequested from the system;
and its usability; (iii) the output of the CDSS,
including the format and type of information
supplied (Frize et al., 2010).

The application of machine learning meth-
ods in medicine is the subject of considerable
ongoingresearch, which mainly concentrates on
modeling some of the human actions or think-
ing processes and recognizing diseases from
a variety of input sources (e.g. cardiograms,
CAT (Computed Axial Tomography) / MRI
(Magnetic Resonance Imaging) / ultrasound
scans, photomicrographs, etc.). Other applica-
tion areas are knowledge discovery (Neves

et al., 1999), and biomedical systems, which
include genetics and DNA analysis. The use
of machine learning has also been applied to
biomedical science related systems. There is
already a growing interest in the application of
learning systems for the interpretation of gene
expression data (Brown et al., 1999; Slonim
et al., 2000).

In a medical diagnosis problem, what is
needed is a set of examples that are represen-
tative of all the variations of the disease. The
examples need to be selected very carefully if
the system s to perform reliably and efficiently.
However, development of machine learning
systems for medical decision-making is not a
trivial task. Difficulties include the acquisition,
collection and organization of the data that will
be used for training the system. This becomes
a major problem, especially when the system
requires large data sets over long periods of time,
which in most cases is not available due to the
lack ofan efficient recording system, or because
ofprivacy issues. Another difficulty arises when
trying to automate some processes as not all
of them can be automated due to ethical and
safety issues. Deciding what could and needs
to be automated directly influences the design
and implementation of the learning system.

The aim of this paper is to compare two
classifiers with other machine learning tech-
niques for the prediction of medical outcomes,
such as the hours of ventilation necessary for
patients in the Intensive Care Unit (ICU), and
the prediction on whether the patient is likely
to survive. Our two classifiers developed are
based on Artificial Neural Networks and Ge-
netic Programming, which are compared to
well-known classifiers.

The paperis structured as follows. The first
section describes related work, in particular dif-
ferent classification models. The datasets and
our two classifiers used for this investigation are
described, as well as the other classifiers used
to perform the comparison. The results are then
provided and compared, and the conclusions
and future work are presented.
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RELATED WORK

Supervised classification is one of the tasks most
frequently carried out in the area of medical
informatics. The most prominent classifica-
tion algorithms can be categorized into logic-
based algorithms, neural network algorithms,
statistical learning algorithms, instance-based
learning algorithms and support-vector machine
algorithms. A summary of all algorithms is
given below.

There are two groups of learning-based
models: decisiontrees and rule-based classifiers.
Decision trees are trees that classify instances
by sorting them based on feature values. Each
node in a decision tree represents a feature in
an instance to be classified, and each branch
represents a value that the node can receive.
Instances are classified starting at the root node
and sorted based on their feature values. The
most well-known algorithm is C4.5 (Quinlan,
1993). C4.5 is an extension of Quinlan’s earlier
ID3 algorithm (Quinlan, 1979).

Decision trees can be translated into a set
of rules by creating a separate rule for each
path from the root to a leaf in the tree (Quin-
lan, 1993). However, rules can also be directly
induced from training data using a variety of
rule-based algorithms. Classification rules rep-
resent each class by a disjunctive normal form
relation. The goal is to construct the smallest
rule-set that is consistent with the training data.
Awell-known rule-based algorithm is RIPPER
(Repeated Incremental Pruning to Produce Error
Reduction) (Cohen, 1995).

Neural network approaches are based on
the perceptron (Rosenblatt, 1962). A single-
layer perceptron network consists of one or
more artificial neurons in parallel. Each neuron
in the layer provides one network output, and
is usually connected to all of the external (or
environmental) inputs. The perceptron learning
algorithm works as follows. First, the weight
and threshold values of the neuron are set to
random values. Then, the inputis presented. Af-
terwards, the output of the neuron is calculated,
and the weights of the neurons are adjusted.
These steps are repeated until a defined error

criterion is satisfied. As perceptrons can only
classify linearly separable sets of instances,
multi-layered perceptrons were invented. A
multi-layer neural network consists of large
number of units jointed together in a pattern
of connections. The pattern of connections is
ordered into three layers: input, hidden and
output layer. There are several algorithms with
which the network can be trained; however,
the most well-known and widely used learning
algorithm to estimate the values of the weights
is the Backpropagation algorithm (Bryson &
Ho, 1969).

Statistical approaches are characterized
by having an explicit underlying probability
model, which provides a probability that an
instance belongs in each class, rather than
simply a classification. Bayesian networks are
the most well known representative of statisti-
cal learning algorithms. A Bayesian network
is a graphical model for probability relation-
ships among a set of variables. The Bayesian
network structure S is a directed acyclic graph
(DAG) and the nodes in S are in one-to-one
correspondence with the features X. The arcs
represent causal influences among the features,
which the lack of possible arcs in S encodes
conditional interdependencies. Moreover, a
feature is conditionally independent from its
non-descendants given its parents. Typically,
the task of learning a Bayesian network can be
divided into two subtasks: first, the learning of
the DAG structure of the network, and then the
determination of its parameters (Jensen, 1996).
Naive Bayesian network are very simple Bayes-
iannetworks, which are composed of DAG with
only one parent (representing the unobserved
node) and several children (corresponding to
observed nodes) with a strong assumption of
independence among child nodes in the context
of their parent (Good, 1950).

Instance-based learning algorithms are la-
zy-learning algorithms (Mitchell, 1997), as they
delay the induction or generalization process
until classification is performed. Lazy-learning
algorithms require less computation time
during the training phase than eager-learning
algorithms such as decision trees, neural and
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Bayes networks, but more computation time
during the classification process. One of the
most straightforward instance-based learning
algorithms is the nearest neighbour (kNN)
algorithm, which is based on the principle that
the instances within a dataset generally exist
in close proximity to other instances that have
similar properties (Cover & Hart, 1967). If the
instances are tagged with a classification label,
then the value of the label of an unclassified
instance can be determined by observing the
class ofits nearest neighbours. The kNN locates
the k nearest instances to the query instance and
determines its class by identifying the single
most frequent class label.

Support vector machines (SVMs) is the
newest commonly used supervised machine
learning technique (Vapnik, 1995). SVMs re-
volve around the notion of a “margin” — either
side of a hyperplane that separates two data
classes. Maximizing the margin and thereby
creating the largest possible distance between
the separating hyperplane and the instances on
either side of it has been shown to reduce an up-
per bound on the expected generalization error.

APPROACHES

For the classification of the medical ICU
outcomes “death” and “hours of ventilation”,
our two approaches are investigated further by
comparing them to the most common machine
learning algorithms of WEKA. The datasets,
evaluation measures, and classifiers are ex-
plained in detail below.

Dataset

In this study, there were two data sets from an
adult intensive care unit, each having the fol-
lowing features:

*  Age of the patient

e Chronic: 1 ifillness is chronic, 0 otherwise

*  Emergency case: 1 if it is an emergency,
0 otherwise

»  Postoperation: 1 if patienthad an operation
before, 0 otherwise

e Gender: 1 male, -1 female

*  Body temperature

*  MAP: mean arterial pressure

e Heart rate

*  Respiratory rate

* FiO, (inspired oxygen)-concentration in
blood

* PO, (partial pressure of oxygen) in blood

*  pH-value (arterial)

e Na: serum sodium (mMol/L of blood)

*  K: serum potassium (mMol/L of blood)

e Serum creatinine (mMol/L of blood)

*  Hematocrit: (volume of red blood cells) /
(volume of blood total)

«  WBC: white blood cell count (total/mm?®
in 1000’s)

*  GCS: Glasgow Coma Score (level of
consciousness)

One of the datasets contains data of the
outcome “‘survival of patient”, and the other
contains the “hours of ventilation” needed by
the patient. In the second case, the learning
task is a classification into the classes “at most
8 hours of ventilation” and “more than 8 hours
of ventilation”. The complete data set contains
1491 entries with 18 features, 14 numerical, 4
boolean. The sets are divided into two smaller
sets, according to one Boolean attribute, detail-
ing whether the patient had an operation before
coming to the ICU. Inthe following, the sets will
be referred to as Mortality post-OP, Mortality
non-OP, Ventilation post-OP and Ventilation
non-OP. There are 884 entries for the post-OP
case, 608 cases for non-OP patients; 12.50%
of the non-OP patients’ die, and 3.17% of the
post-OPs. The prevalence of patients needing
more than 8 hours of ventilation is 35.53% in
the non-OP set, and 28.28% in the post-OP set.
Table 1 shows the distribution of the data sets.

Evaluation Measures

The following measures are recorded: (1) sen-
sitivity: the percentage of positives correctly
identified (death or needing more than 8 hours
of ventilation is considered ‘positive’); (2)
specificity: The percentage of negatives cor-
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Table 1. Distribution of data set split into 4 categories: ventilation non-OP, ventilation post-OP,
mortality non-OP, and mortality post-OP

Data set number of cases mortality rate [%] more than 8 hours of
ventilation [%]

non-OP 608 12.50 35.53

post-OP 884 3.17 28.28

rectly identified; (3) CCR (Correct Classifica-
tion Rate): percentage of correct predictions in
total; (4) area under ROC (Receiver Operating
Curve). The fitness function used for this study
is the log-sensitivity:

logsens = —sensitivity"

*log(1 — sensitivity * specificity) )

WEKA Algorithms

The classifier of the open source machine-
learning package called WEKA (Witten and
Frank, 2005) will be compared to our two
approaches. WEKA is a collection of machine
learning algorithms for solving real-world data
mining problems. Within WEKA there are sev-
eral machine learning algorithms available for
classification, which are neural networks, sup-
port vector machines, decision trees, Bayesian
classifiers, and lazy learning methods. A set of
the most common machine learning algorithms
were chosen for this investigation and a brief
description is provided below:

*  BN: BN is a Bayes Network learning al-
gorithm using various search algorithms
and quality measures.

*  IBk:K-nearestneighbours classifier, which
can select an appropriate value of K based
on cross-validation, and also performs
distance weighting.

e J48: This algorithm, as explained earlier,
contains the class for generating a pruned
or unpruned C4.5 decision tree.

*  JRip: Thisclass implements a propositional
rule learner RIPPER.

+ K*:K*isan instance-based classifier, i.e.
the class of a test instance is based upon the
class ofthose training instances similarto it,
as determined by some similarity function.

MP: MP is a multilayer perceptron that
uses backpropagation to classify instances.
The nodes in this network are all sigmoid
(except for when the class is numeric,
in which case the output nodes become
unthresholded linear units).

*  NB: Class for a Naive Bayes classifier us-
ing estimator classes. Numeric estimator
precision values are chosen based on the
analysis of the training data.

*  SMO: Support vector machines are a set
ofrelated supervised learning methods that
analyze data and recognize patterns, used
for classification and regression analysis.
SMO (Sequential minimal optimization)
in particular implements the sequential
minimal optimization algorithm for train-
ing a support vector classifier. This imple-
mentation globally replaces all missing
values and transforms nominal attributes
into binary ones. It also normalizes all at-
tributes by default.

Neural Network with Weight-
Elimination (NNWEA) Approach

The neural network implementation uses a
weight-elimination algorithm, processing the
data through the ANN and then applying the
weight-elimination algorithm. Weight-elimina-
tion attempts to reduce small weights to zero
(Frize et al., 1995, Ennett & Frize, 2003), ef-
fectively removing them from the neural net-
work. This is essentially a form of pruning the
network, which has been used to improve ANN
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classification results. The back-propagation
portionupdates the weights in order to maximize
the log sensitivity value, an early stopping
criterion used to balance sensitivity and speci-
ficity and slightly favor sensitivity (Ennett et
al., 2002), given in Equation (1). Each ANN
run is stopped when the best performance has
been reached and maintained for the last 500
epochs. The ANN was set to create classifiers
using between 3 and 11 hidden nodes. The best
performing classifier was chosen from the nine
classifiers. The process has been entirely auto-
mated (Rybchynski, 2005; Ennett et al., 2004).
The values are scaled between -1 and 1 by us-
ingamodified Z-score transformation equation.
The fourteen input variables (as given in the
dataset subsection) were normalized using
Equation (2) where o is the normalized value,
« is the value, ;o is the mean and o is the
standard deviation:

o =2"H @)

3*o

Categorical variables (chronic, emergency
surgery, sex) were givena value of -1 or 1. Once
the variables were normalized, they were split
into a training (46.0%), test (28%) and verifica-
tion set (25%). Since the mortality dataset had
a low prevalence of cases in both the post-OP
(3.17%) and non-OP (12.50%) databases, we
randomly re-sampled from this population in
order to improve the performance of the ANN in
terms of sensitivity (Ennett & Frize, 2000). For
the post-OP dataset, the training set was raised
t0 5.06% of cases from the original 3.37%. For
the verification sets for the outcome ventilation
(that is, positive cases defined as “more than 8
hours of ventilation”), was randomly sampled
to create ten different sets. The verification sets
were used to measure the performance of the
ANN and to determine the mean and standard
deviation of the ANN performance. A satisfac-
tory performance on the verification sets was
indicative that the classifier generalizes well on
new, unseen cases. Poor performance suggests
overtraining of the network.

Automatic Genetic Programming
(AGP) Approach

The origins of evolutionary computation reach
back to the 50’s of the last century. Genetic
programming, in itself, was not considered until
the middle of the 80’s. The term first appeared
in (Cramer, 1985), and the main development
took place in the early and middle 90’s, particu-
larly through work by Koza (1992). Genetic
programming uses the concepts of genetics and
Darwinian natural selection to generate and
evolve entire computer programs. Genetic pro-
gramming largely resembles genetic algorithms
in terms of its basic algorithm. The notions of
mutation, reproduction (crossover) and fitness
are essentially the same; however, genetic pro-
gramming requires special attention when using
those operations. While genetic algorithms are
concerned with modifying fixed-length strings,
usually associated with parameters to a function,
genetic programming is concerned with actually
creating and manipulating the (non-fixed length)
structure of the program (or function). There-
fore, genetic programming is more complex
than genetic algorithms (Banzhaf et al., 1998)
and works as follows. The solution is developed
by first creating a number of initial programs,
which are then recombined and changed in each
evolution step. The set of programs is referred
to as the population; any single program is an
individual. Run of evolution is the term used to
describe the whole process of finding a solution.
Before starting an evolution, one has to define
(at least) the following:

»  Fitness measure/function: a function that
evaluates how close a program is to the
optimal solution. For the prognosis, the
fitness value, as given by Equation (1), is
to be minimized.

*  Population size: the number of programs
that are supposed to be used for evolving
a solution.

e Function and terminal set: functions,
constants, and variables the programs are
allowed to use.
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*  Geneticoperators: selection, crossover and
mutation operators and the probability for
using the later two. There are a variety of
different selection, crossover and mutation
operators available to choose from.

e Termination criterion: the evolutionusually
either ends if a sufficiently good solution
is found, or if the maximum number of
iterations is reached.

After setting these parameters, the initial
population can be created. Unless one already
has some idea about how the solution might
look like, the programs are builtrandomly. Each
evolution step works as follows: Until a certain
percentage of the population size (crossover
rate) is reached, new programs are constructed
as follows: 2 programs are selected according to
the chosen selection method. The programs are
“crossed over”, that means certain parts of them
are swapped. In tree-based genetic program-
ming, a subtree is selected in each program and
the two subtrees are swapped. The remaining
part of the new population consists of copied
programs from the old population (reproduc-
tion is the term used for copying old programs)
or newly created programs. With a certain
probability, the mutation rate, an individual
is changed. Mutation can have various forms,
most commonly it only changes one function/
terminal in a program to a different one. This
process is repeated until the termination crite-
rion is reached. The result of the run is usually
the program with the best fitness value found
during the whole evolution (Poli et al., 2010).

The Java Genetic Algorithms Package
(JGAP) (JGAP, 2010) was chosen as the
programming platform. JGAP is a Genetic

Table 2. Feature selection for GP approach

Algorithms and Genetic Programming pack-
age written in Java. It is designed to require
minimum effort to use, but is also designed to
be highly modular. It provides basic genetic
mechanisms that can be used to apply evolu-
tionary principles to solve problems.

Inordertoachieve high accuracy measures
such as sensitivity, specificity, CCR and ROC,
the following approach was used to automati-
cally fine-tune the GP approach. First, feature
selection is performed, then different function
sets are analyzed and afterwards the number of
generations and population size are investigated.

In all experiments a crossover rate of 0.9
and a mutation rate of 0.1 is used, as well as
a population of size 500 is evolved for 300
generations is used for the function set and
feature selection. Per generation 10% of the
new population is made up by randomly cre-
ated new individuals, the maximal crossover
depth is 12, maximal initial depth is 5, and the
maximal number of nodes is 60.

Feature selection resulted in the follow-
ing features chosen as GP operators as shown
in Table 2. As can be seen, for each dataset
different features were selected. The common
features used for the ventilation datasets are
FiO,, respiratory rate and emergency case. The
common features for the mortality datasets are
MAP, serum creatinine and chronic.

Different function sets were tested. The
function set with the highest CCR and ROC
values consisted of the following: addition,
subtraction, multiplication, division, larger
than, less than, if, logical and, logical or,
power function, square root. The reason why
the function set worked best is because of the
if, the logical and, and the logical or, as with-

Features

Ventilation non-OP

FiO,, respiratory rate, GCS, PO,, emergency case, body temperature, pH value, Na value

Ventilation post-OP

Respiratory rate, FiO,, Na value, emergency case

Mortality non-OP

GCS, FiO,, MAP, serum creatinine, age, chronic

Mortality post-OP

Emergency case, chronic, heart rate, gender, MAP, PO,, serum creatinine
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out these operators the evolved program only
consists of one condition.

Population sizes of 500, 700 and 1000
are tested for 100, 200, 300 and 500 genera-
tions each. For all data sets the best fitness is
indeed achieved for 1000 individuals and 500
generations: 1.493, which corresponds to an
improvement of slightly more than 2.24%.
Overall, a larger population size seems to have
a higher impact than an increase in the number
of generations.

EXPERIMENTS AND RESULTS

Tables 3 to 6 show the results of this investi-
gation. The values of sensitivity, specificity,
CCR and ROC value are shown for all algo-
rithms tested. The first eight algorithms are
run with WEKA, and the other two classifier
implementations (NNWEA and AGP) are run
independently. In order to assess these results,
it is useful to follow a guideline that physician
partners with the Carleton research group favor.
Forexample, ifa patientis predicted to live, but
dies, this is considered worse than if a patient
is predicted to die, but lives. In considering this
guideline, we therefore need to ensure that the
specificity is close to or over 85%, and that the
sensitivity is as high as possible, which means
better than 65%.

Table 3. Ventilation dataset — non-OP

The results below are judged according to
this principle. The CCR is not that important
to our clinician partners. For ROC, a value
greater or equal to 0.80 shows fairly good
discrimination ability. For ventilation, it is
important to predict long-term use, as this will
impact both the patient status and the planning
ofresources such as the availability of artificial
ventilation machines.

As can be seen from Table 3, the AGP
and the NNWEA approaches score best in
considering a combination of sensitivity and
specificity, and the ROC value is over 0.80.
The AGP approach does a little better than the
NNWEA on sensitivity and a little worse than
the NNWEA for specificity. Neither approach
reaches the optimal value of 0.85; however, as
explained above, this is not very critical. These
results can help to plan the use of ventilators
in the ICU.

Forthenextdataset (see Table 4), the scores
areas follows: K* ranks best in terms of sensitiv-
ity; AGP ranks highest in terms of specificity;
the highest value of CCR is achieved by J48;
and the ROC value is largest using BN. How-
ever, for the overall score, our two approaches
meet the guideline and perform better than all
other approaches.

Table 5 shows the results of the mortality
dataset looking at non-OP patients. A sensitiv-
ity of 1 can be observed for SMO; however,

Sensitivity Specificity CCR ROC

BN 0.793 0.759 0.781 0.853
IBk 0.823 0.560 0.729 0.693
J48 0.803 0.606 0.734 0.679
JRip 0.844 0.653 0.776 0.776
K* 0.911 0.338 0.707 0.772
MP 0.811 0.630 0.747 0.746
NB 0.809 0.690 0.766 0.834
SMO 0.844 0.588 0.753 0.716
NNWEA 0.840 0.750 0.760 0.820
AGP 0.913 0.693 0.772 0.803
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Table 4. Ventilation dataset — post-OP

Sensitivity Specificity CCR ROC

BN 0.910 0.820 0.884 0.934
1Bk 0.869 0.548 0.778 0.693
J48 0.930 0.816 0.898 0.869
JRip 0.935 0.784 0.892 0.860
K* 0.952 0.408 0.798 0.841
MP 0.929 0.732 0.873 0.902
NB 0.897 0.680 0.836 0.898
SMO 0.938 0.726 0.878 0.835
NNWEA 0.920 0.860 0.880 0.930
AGP 0.906 0.882 0.890 0.894

the specificity is 0, which implies that the
model specifically classified all unseen in-
stances to one of the two classes (death).
Therefore, SMO is not a good choice for this
particular dataset. K* achieves the highest
sensitivity, NNWEA achieves the highest
specificity, CCR is highest using SMO, and the
ROC value is largest using BN. For the overall
performance, the NNWEA performs best, al-
though more tuning would be needed to increase
the specificity, although this would be slightly
at the expense of the sensitivity.

The last table (Table 6) shows the same
behavior of SMO. Besides that, again K*
achieves a very high sensitivity value of 0.998.

Table 5. Mortality dataset — non-OP

The highest values for specificity and ROC are
achieved by AGP and the highest CCR value
is gained using BN. Here the best overall per-
forming approach is the AGP, which meets the
guideline.

Insummary, looking at our two approaches,
the values of all measures are very comparable,
in particular for the two ventilation datasets.
For the mortality datasets, much higher values
for specificity are achieved by the WEKA al-
gorithms, but sensitivity is fairly low for these
approaches. The AGP approach scored best
in quite a few categories, as did the NNWEA
approach.

Sensitivity Specificity CCR ROC

BN 0.925 0.368 0.855 0.852
IBk 0.912 0.329 0.839 0.610
J48 0.919 0.303 0.842 0.589
JRip 0.957 0.276 0.872 0.629
K* 0.959 0.237 0.868 0.762
MP 0.930 0.395 0.863 0.805
NB 0.838 0.579 0.806 0.826
SMO 1.000 0.000 0.875 0.500
NNWEA 0.520 0.820 0.690 0.800
AGP 0.921 0.737 0.760 0.829
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Table 6. Mortality dataset — post-OP

Sensitivity Specificity CCR ROC
BN 0.995 0.179 0.969 0.849
IBk 0.988 0.071 0.959 0.537
J48 0.984 0.107 0.956 0.585
JRip 0.987 0.143 0.960 0.567
K* 0.998 0.000 0.967 0.736
MP 0.987 0.071 0.958 0.704
NB 0.950 0.536 0.937 0.854
SMO 1.000 0.000 0.968 0.500
NNWEA 0.670 0.790 0.840 0.770
AGP 0.937 0.893 0.895 0.915
CONCLUSION Future work includes further improvements

Intensive care medicine most often involves
rapid decision-making on the basis of a huge
amount of information. ICU physicians often
rely on conventional wisdom and personal ex-
perience to arrive at assessments and judgments.
This requires an intuitive weighting of various
factors to achieve an optimal balance between
clinical situations that are often competing.
There is increasing interest in computer-based
decision support tools to automate aspects of
the medical decision-making that takes place in
complex clinical areas such as the ICU.

For the classification of the medical ICU
outcomes “death” and “hours of ventilation”,
our two approaches (one based on Artificial
Neural Networks and the other based on Genetic
Programming) were investigated and found
to perform better overall than most common
machine learning algorithms of WEKA, given
certain clinical expectations. As seen from the
results of the experiments using the ICU datas-
ets, our two approaches (NNWEA and AGP) are
performing very well and are comparable to the
algorithms provided by WEKA. In particular,
the AGP and NNWEA approaches scored the
highest values in some categories.

andrefinements to the algorithms, as well as the
implementation of the algorithms into a clas-
sifier suite. This classifier suite would contain
all available algorithms and a selection policy,
which would run all classifiers, measuring their
sensitivity, specificity, CCR and ROC values.
Given user specified input on the importance
of these four measures, a weighted approach
would return the best classifier for a particular
dataset. It is likely that this combined approach
will increase the performance of'a decision sup-
port system for critical care in estimating these
two outcomes. Other outcomes could be added
such as length of stay in the unit, and onset of
sepsis forexample. Anotheraspect which could
be investigated in the future is to test our ap-
proaches with alarge medical data set, collected
from a different clinical environment, in order
to validate them more thoroughly.
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