
Chapter #

CONTEXT-AWARE ONTOLOGY SELECTION
FRAMEWORK

Simone A. Ludwig1 and S.M.S. Reyhani2
1School of Computer Science, Cardiff University, Cardiff CF24 3AA, UK; 2Department of
Information Systems and Computing, Brunel University, Uxbridge, Middlesex UB8 3PH, UK

Abstract: Automatic discovery of services is a crucial task for the e-Science and e-
Business communities. Finding a suitable way to address this issue has
become one of the key points to convert the Web in a distributed source of
computation, as it enables the location of distributed services to perform a
required functionality. To provide such an automatic location, the discovery
process should be based on the semantic match between a declarative
description of the service being sought and a description being offered. This
problem requires not only an algorithm to match these descriptions, but also a
language to declaratively express the capabilities of services. This section
presents a context-aware ontology selection framework, which allows an
increase in precision of the retrieved results by taking the contextual
information into account.

Key words: Context information; semantic service discovery; web services.

1. INTRODUCTION

Recently, more and more organizations are implementing IT systems
across different departments. The challenge is to find a solution that is
extensible, flexible and fits well with the existing legacy systems. Replacing
legacy systems to cope with the new architecture is not only costly but also
introduces a risk to fail. In this context, the traditional software architectures
prove ineffective in providing the right level of cost effective and extensible
Information systems across the organization boundaries. Service Oriented

2 Chapter #

Architecture (SOA) [1] provides a relatively cheap and more cost-effective
solution addressing these problems and challenges.

One important factor in defining a new model of Software Architecture is
the ever-changing business model. Modern day business constantly needs to
adapt to new customer bases. The ability to quickly adapt to the new
customer base and new business partners is the key to success. Sharing IT
systems with other organizations is a new trend in the business. For example,
businesses like online auctions are opening their systems to third party
organization in an effort to better reach their customer base. In this context,
SOA offers benefit and cost-effectiveness to the business. The process of
adapting to the changing business model is not an easy task. There are many
legacy systems, which are difficult to make available to the new business
partners. These legacy systems might need to change to support the new
business functions and integrate to the newly developed IT systems or
integrate to the IT systems of its partners'. The complexity of this on the
whole is what makes it a constant challenge to organizations.

Dynamic discovery is an important component of SOA. At a high level,
SOA is composed of three core components: service providers, service
consumers and the directory service. The directory service is an intermediary
between providers and consumers. Providers register with the directory
service and consumers query the directory service to find service providers.
Most directory services typically organize services based on criteria and
categorize them. Consumers can then use the directory services' search
capabilities to find providers. Embedding a directory service within SOA
accomplishes the following:
• Scalability of services
• Decoupling consumers from providers
• Allowing updates of services
• Providing a look-up service for consumers
• Allowing consumers to choose between providers at runtime rather than

hard-coding a single provider.
Although the concepts behind SOA were established long before web

services came along, web services play a major role in SOA. This is because
web services are built on top of well-known and platform-independent
protocols (HTTP (Hypertext Transfer Protocol) [2], XML (Extensible
Markup Language) [3], UDDI (Universal Description, Discovery and
Integration) [4], WSDL (Web Service Description Language) [5] and SOAP
(Simple Object Access Protocol) [6]). It is the combination of these
protocols that make web services so attractive. Moreover, it is these
protocols that fulfil the key requirements of a SOA. That is, a SOA requires
that a service be dynamically discoverable and invokeable. This requirement
is fulfilled by UDDI, WSDL and SOAP.

#. CONTEXT-AWARE ONTOLOGY SELECTION FRAMEWORK 3

However, SOA in its current form only performs service discovery based
on particular keyword queries from the user. This, in majority of the cases
leads to low recall and low precision of the retrieved services. The reason
might be that the query keywords are semantically similar but syntactically
different from the terms in service descriptions. Another reason is that the
query keywords might be syntactically equivalent but semantically different
from the terms in the service description. Another problem with keyword-
based service discovery approaches is that they cannot completely capture
the semantics of a user’s query because they do not consider the relations
between the keywords. One possible solution for this problem is to use
ontology-based retrieval.

In this approach, ontologies are used for classification of the services
based on their properties. This enables retrieval based on service types rather
than keywords. This approach uses context information to discover services
using context and service descriptions defined in ontologies.

2. BACKGROUND TO ONTOLOGIES

When two or more parties seek a common understanding of something,
they must work together to ensure that there is a high degree of correlation
and similarity between the details of their respective descriptions and
definitions of what they are trying to agree on [7]. This implies that shared
understanding requires shared definitions. For example, day-to-day human
interactions are made possible by the fact that our society's members share
common knowledge and common values. This sharing of common
understanding is categorized as the science of ontology, which involves the
study of the general concepts and abstractions that make up the fundamental
aspects of our world.

Until the 20th century, ontology was considered a sub-field of philosophy.
Since the early 1990s, an ontology is also a way to model things in computer
science and artificial intelligence. The meaning of the term ontology has
evolved over the years, and its definition has been slightly blurred when
applied to different areas of computing and cybernetics.

Despite certain claims, the term ontology is used in a radically different
sense in artificial intelligence. This term first appeared in the artificial
intelligence literature in 1992 in a paper by Gruber, who stated that “an
ontology is a set of definitions of content-specific knowledge representation
primitives: classes, relations, functions, and object constants” [8]. With this
definition, an ontology is both human and machine readable. An ontology,
together with a syntax and semantics, provides the language by which

4 Chapter #

knowledge-based systems can interoperate at the knowledge-level by
exchanging assertions, queries and answers.

For Gruber, ontology is the term used to the shared understanding of
some domain of interest. It necessarily entails or embodies some sort of
world view with respect to a given domain. The world view is often
conceived as a set of concepts (e.g., entities, attributes, processes), their
definitions and their inter-relationships; this is referred to as a
conceptualization. Such a conceptualization may be implicit, e.g. existing
only in someone’s head, or embodied in a piece of software. For example, an
accounting package presumes some world view encompassing such concepts
as invoice, and a department in an organization. The word ontology is
sometimes used to refer to this implicit conceptualization. However, the
more standard use is that the ontology is an explicit account or
representation of a conceptualization [9].

Depending on who you talk to, the purpose of an ontology can range
from a mere vocabulary of terms to a strict formal logic. To understand the
terminology used, let us consider the example of an auction. An auction
ontology would have to define sellers, buyers, bids, etc. In particular, the
following aspects could be found [10]:
• A taxonomy of concepts:

Both buyers and sellers could be considered agents; as a result, agent is
the super-concept of the concepts buyer and seller.

• Relationships between the concepts:
Sellers offer goods or buyers make bids.

• Facts:
A fact could be that eBay is a marketplace.

• Rules:
If a buyer makes a bid, then include him in the marketing category
“parent”.

• Constraints:
A later bid for the same offer must be higher.
In this example, the ontology would contain the taxonomy of the

concepts in a domain and would define the relationships between these
concepts. The facts, rules and constraints defined could then be applied to
the ontology in order to reason about the knowledge.

3. RELATED RESEARCH

The Web Services Description Language (WSDL) is an XML-based
language used to describe a Web service. This description allows an
application to dynamically determine a Web service’s capabilities, which are

#. CONTEXT-AWARE ONTOLOGY SELECTION FRAMEWORK 5

for example, the operations it provides, their parameters, return values, etc.
A UDDI repository is a searchable directory of Web services that Web
service requestors can use to search for Web services and obtain their WSDL
documents. WSDL documents, however, do not need to be published in a
repository for consumers to take advantage of them. They are also obtainable
through a Web page or an email message.

The Universal, Description Discovery and Integration Extension
(UDDIe) [11], takes an approach that relies upon a distributed registry of
businesses and their service descriptions implemented in a common XML
format. UDDIe specifications consist of an XML schema for SOAP
messages, and a description of the UDDIe API specification. Together, these
form a base information model and interaction framework that provides the
ability to publish information about a broad array of Web services. It follows
the same specification and standards for the registry data structure and API
specification for inquiring and publishing service from the registry.
However, there are slight changes and extensions in the data structure and
the API to improve and maximize the use of the registry. UDDIe defines
four core types of information that provide the kinds of information that a
technical person would need to know in order to use a partner’s Web
services. These are: business information; service information; binding
information; and information about specifications for services. Further, this
information can be discovered by discovery calls based on the later data
types.

The Web Service Modeling Ontology (WSMO) [12] provides the
conceptual framework for semantically describing web services and their
specific properties. The Web Modeling Language (WSDL) is a formal
language for annotating web services with semantic information, which is
based on the WSMO conceptual framework. WSMO aims to create an
ontology for describing various aspects related to Semantic Web Services,
with the defined focus of solving the integration problem. WSMO also takes
into account specific application domains (e-Commerce and e-Work) to
ensure the applicability of the ontology for these areas.

Mandel and Sheila [13] automated web service discovery by using a
semantic translation within a semantic discovery service. The approach uses
a recursive back-chaining algorithm to determine a sequence of service
invocations, or service chain, which takes the input supplied by BPWS4J and
produces the output desired by BPWS4J. The translation axiom are encoded
into translation programs exposed as web services. The algorithm invokes
the DQL (DAML Query Language) [14] service to discover services that
produce the desired outputs. If the semantic discovery service does not have
a required input, the algorithm searches for a translator service that outputs
the required input and adds it to the service chain. As the process is recursive

6 Chapter #

it terminates when it successfully constructs a service chain, or the profiles
in the knowledge base are exhausted.

Semantically enhanced service discovery has also been introduced in the
area of Mobile Computing. DReggie [15] is a dynamic service discovery
infrastructure targeted at mobile commerce applications that besides
performing syntactical matching exploits semantic matching using DAML
(DARPA Agent Markup Language) to describe services and uses a Prolog
reasoning engine for inference. A DReggie Lookup Server to which
DReggie Clients submit their services performs the matching process and
returns information about matches back to the clients.

The UUID-based description and matching of services mechanism of
Bluetooth was enhanced using semantic information associated with services
rather than simple UUIDs in hotspot environments [16]. This includes
priorities, expected values or service attributes and some index of a match’s
closeness. To support this matching mechanism and allow more efficient
service discovery, a service ontology described in a semantic language and a
Prolog-based reasoning engine that uses the ontology was introduced.

Similar research in the Grid area was addressed by Deelman et al. [17]
with their workflow generator and Tangmurarunkit et al. [18] with their
resource selector. The workflow generator addresses the problem of
automatically generating job workflows for the Grid. They have developed
two workflow generators. The first one maps an abstract workflow defined
in terms of application-level components to the set of available Grid
resources. The second generator takes a wider perspective and not only
performs the abstract to concrete mapping but also enables the construction
of the abstract workflow based on the available components. The system
operates in the application domain and chooses application components
based on the application metadata attributes.

The ontology-based resource selector exploits ontologies, background
knowledge, and rules for solving resource matching in the Grid to overcome
the restrictions and constraints of resource descriptions in the Grid. In order
to make the matchmaking more flexible and also to consider the structure of
VOs the framework consists of ontology-based matchmakers, resource
providers and resource consumers or requesters. Resource providers
periodically advertise their resources and capabilities to one or more
matchmakers using advertisement messages. The user can then activate the
matchmaker by submitting a query asking for resources that satisfy the
request specification. The query is then processed by the TRIPLE/XSB
deductive database system [19] using matchmaking rules, in combination
with background knowledge and ontologies to find the best match for the
request.

#. CONTEXT-AWARE ONTOLOGY SELECTION FRAMEWORK 7

4. CONTEXT-AWARE ONTOLOGY SELECTION

FRAMEWORK

As seen from the existing approaches the need for more expressiveness
of service descriptions was stated revealing the limitation of a syntactic
approach to service discovery. To follow these movements proposed by the
related work towards a semantic based approach for service discovery the
context-aware ontology selection framework is proposed. This approach
supplements the current approaches by taking context attributes for the
service discovery process into account. Additional requirements have driven
this framework towards a context-aware ontology selection framework.

4.1 Need for “Context-Awareness”

Definition of context and “context-awareness” is challenging and is done
in many research areas such as artificial intelligence, human-computer
interaction, ubiquitous computing etc. In the past, context has been left out in
computer science [20]. The computer science field has strived for context-
independence for simplicity reasons. By improving the computer’s access to
context, thereby introducing context-independence, the richness of
communications in human-computer interactions can be improved and more
useful computational services can be created [21]. For instance, consider the
following example of an e-shopping service, where the e-services can be
selected depending on the shopping context. This incorporation of contextual
information for the matchmaking process should provide a higher precision
and recall of service matches.

4.2 Framework Requirements

An advertisement matches a request, when the advertisement describes a
service that is sufficiently similar to the service requested [22]. The problem
of this definition is to specify what “sufficiently similar” means. Basically, it
means that an advertisement and a request are “sufficiently similar” when
they describe exactly the same service. This definition is too restrictive,
because providers and requesters have no prior agreement on how a service
is represented and additionally, they have very different objectives. A
restrictive criterion on matching is therefore bound to fail to recognize
similarities between advertisements and requests.

Specific requirements for the context-aware ontology selection
framework are as follows:
1. Specification of context descriptions

Enabling the selection of services via the context descriptions.

8 Chapter #

2. High degree of flexibility and expressiveness

The advertiser must have total freedom to describe their services.
Different advertisers want to describe their services with different
degrees of complexity and completeness. The description tool or
language must be adaptable to these needs. An advertisement may be
very descriptive in some points, but leave others less specified.
Therefore, the ability to express semi-structured data is required.

3. Support for subsumption
Matching should not be restricted to simple service name comparison. A
type system with subsumption relationships is required, so more complex
matches can be provided based on these relationships.

4. Support for data types
Attributes such as quantities and dates will be part of the service
descriptions. The best way to express and compare this information is by
means of data types.

5. Matching process should be efficient
The matching process should be efficient which means that it should not
burden the requester with excessive delays that would prevent its
effectiveness.

6. Flexible and modular structure
The framework should be flexible enough to Web applications to
describe their context semantics in a modular manner.

7. Lookup of matched services
The framework should provide a mechanism to allow the lookup and
invocation of matched services.

4.3 Architecture

The architecture shown in Figure 1 comprises of clients, matchmaker,
context and service ontologies, registries and web servers which host the
web services.

The components are now explained in more detail:
1. Clients provide an interface for the users to describe their service

requests. The interface also lists the matches and provides a facility to
call the web services retrieved.

2. Registries contain the service information storing all service data. Service
descriptions are in the form of service name, service attributes (inputs
and outputs), service description and metadata information.

3. Web Servers host the web services.
4. Matchmaker consists of the matching module including the matching

algorithm and a reasoner for the ontology matching part. The matching
algorithm is explained in further detail in the following section.

#. CONTEXT-AWARE ONTOLOGY SELECTION FRAMEWORK 9

5. Ontologies (context and services) describe the domain knowledge such as

book shop services and provide a shared understanding of the concepts
used to describe services. Contextual information is crucial to ensure a
high quality service discovery process [8].

Figure 1. Matching Architecture.

The sequence diagram in Figure 2 shows the interactions of a service

request. The user contacts the matchmaker where the matching algorithm is
stored (1). The matchmaker contacts the context ontology (2 and 3) and
reasons depending on a set of rules defined. The same is done for the
services ontology (4 and 5). Having additional match values the registry is
then queried (6) to retrieve service descriptions which match the request and
returns the service details to the user via the matchmaker (7). The parameters
stored in the registry are service name, service attributes, service description,
metadata information and contact details. Having the URL of the service the
user can then call the web service (8) and interact (9) with it.

Three steps are necessary to perform the request. First the service request
is matched semantically within the context specified which provides further
attributes for the service matching where services are matched semantically
within their service domain and finally a lookup with the registry is done to
return the matched service details.

10 Chapter #

Figure 2. Interaction Diagram.

4.4 Matching Algorithm

The main component of the context-aware ontology selection framework
is the matching algorithm. The matching algorithm categorizes the matches
into different classes. The different matching degrees are as follows.
Consider a user request R and a service description S. In order to rank the
relevance of the match we classify the matches into 5 categories (Figure 3).

Figure 3. Matching Categories.

These are:

1. Exact match SR = : The request matches the service exactly, i.e. all
properties are a match.

2. Plug-in match SR ⊂ : The service allows more than the requester wants.
3. Subsume match RS ⊂ : A subset of the request is fulfilled.
4. Intersection match φ≠∩ SR : The request is partially fulfilled.
5. Disjoint match φ=∩ SR : The request and the service do not share any

properties.
Three categories can be derived from classifying the types of matches

that are useful for the user. These are:

#. CONTEXT-AWARE ONTOLOGY SELECTION FRAMEWORK 11

1. Precise match: Exact and Plug-in match. The service provides the

requested functionality or more.
2. Partial match: Subsume and intersection match. The service is capable of

providing part of the requested functionality.
3. Mismatch: Disjoint match. The service is not capable of providing the

requested functionality and therefore will not be returned to the user.
Furthermore, to break down the matching categories, the matching

algorithm implemented for the prototype calculates match scores taking into
consideration the number of parameters for each category type (service
attributes, service description and metadata information). To relate the match
scores with the matching categories the classification is as follows. If the
match score is equal to 1 then the match was a precise match which means
that all service parameters matched. If the match score is smaller than 1 then
the match was a partial match and if the match score returns 0 then it was a
mismatch.

SNR: Service name from request
SAR: Service attributes from request
SDR: Service description from request
SMR: Service metadata information from request
SN: Service name from registry
SA: Service attributes from registry
SD: Service descriptions from registry
SM: Service metadata information from registry
MV: Match value
MS: Match score
MD: Match details of service

SNR, SAR, SDR, SMR ← read_service_request_from_GUI()
SN, SA, SD, SM ← load_service_descriptions()
for all service_descriptions_in_registry do
 if SNR equals SN
 MS = 1
 else
 ontology_search_of_context_and_services()
 check_SAR_with_SA()
 MV ← calculate_match_value()
 check_SDR_with_SD()
 MV ← calculate_match_value()
 check_SMR_with_SM()
 MV ← calculate_match_value()
 MS ← calculate_match_score()
 end if
 MD ← store_service_match_details()
end for

Figure 4. Matching Algorithm.

The matching algorithm (Figure 4) is defined taking the classification and

match categories into consideration. The algorithm reads the service request
parameters from the GUI first. Then a connection to the registry is made in
order to search and read the service parameters. In a “for loop” considering
all services stored in the registry, first the service name of the service is

12 Chapter #

compared with the service name of the request. If they are “equal” (assuming
that the user knows the name of the service) the match score is set to 1 and
no further steps are necessary. If “not” then the following steps need to be
performed. The context and service ontology parameters are read, then the
registry is queried using the service request and ontology parameters. If
matches are found, then the match values are calculated for all three
categories (service attributes, service description and service metadata).
Afterwards the overall match score for a particular service is calculated and
the service details are retrieved which are then stored and returned.

The overall consideration within the matchmaking approach for the
calculation of the match score is to get a match score returned which should
be between 0 and 1, where 0 represents a “mismatch”, 1 represents a
“precise match” and a value in-between represents a “partial match”. The
overall match score consists of the match score for service attributes, service
description and service metadata respectively:

3
MDA

O
MMMM ++

= (1)

whereby OM , AM , DM , MM are the overall, attribute, description and
metadata match scores respectively.

Looking at the service attributes first, it is necessary to determine the
ratio of the number of service attributes given in the query in relation to the
number given by the actual service. To make sure that this ratio does not
exceed 1, a normalisation is performed with the inverse of the sum of both
values. This is multiplied by the sum of the number of service attributes
matches divided by the number of actual service attributes (2a). Similar
equations (2b) and (2c) were derived for service descriptions and service
metadata respectively. The importance of service attributes, description and
metadata in relation to each other is reflected in the weight values.

AS

MA

AS

AQ

ASAQ

A
A n

n
n
n

nn
w

M ⋅⋅
+

=
)(

 (2a)

DS

MD

DS

DQ

DSDQ

D
D n

n
n
n

nn
w

M ⋅⋅
+

=
)(

 (2b)

#. CONTEXT-AWARE ONTOLOGY SELECTION FRAMEWORK 13

MS

MM

MS

MQ

MSMQ

M
M n

n
n
n

nn
w

M ⋅⋅
+

=
)(

 (2c)

whereby Aw , Dw and Mw are the weights for attributes, description and
metadata respectively; AQn , ASn and MAn are the number of query
attributes, service attributes and service attribute matches respectively; DQn ,

DSn and MDn are the number of query descriptions, service descriptions and
service description matches respectively; MQn , MSn and MMn are the
number of query metadata, service metadata and service metadata matches
respectively.

4.5 How does the Architecture fulfill the Requirements?

This framework is based on semantic service descriptions and it fulfils
the seven requirements specified in section 4.2 as follows. Requirement 1 is
satisfied with the context selection stage. Requirement 2 to 5 are fulfilled by
the use of a shared ontology and a reasoning engine to achieve semantic
matchmaking. Shared ontologies are needed to ensure that terms have clear
and consistent semantics. Otherwise, a match may be found or missed based
on an incorrect interpretation of the request. The matchmaking engine should
encourage providers and requesters to be precise with their descriptions. To
achieve this, the service provider follows an XML-based description, which
is the ontology language OWL. To advertise and register its services the
service requester generates a description in the specified OWL format.
Defining the ontologies precisely allows the matchmaking process to be
efficient. The advertisements and requests refer to OWL concepts and the
associated semantics. By using OWL, the matchmaking process can perform
implications on the subsumption hierarchy leading to the recognition of
semantic matches despite their syntactical differences between
advertisements and requests. The use of OWL also supports accuracy, which
means that no matching is recognised when the relation between the
advertisement and the request does not derive from the OWL ontologies.
Complex reasoning needs to be restricted in order to allow the matching
process to be efficient. Requirement 6 is fulfilled as the framework supports
flexible semantic matchmaking between advertisements and requests based
on the ontologies defined. Minimising false positives and false negatives is
achieved with the selection process, where the request is matched within the
appropriate application context. The context and semantic selection stages
could have been integrated into one, however having context and services
ontologies separately allows a modular design as it encapsulates the context
knowledge from the services knowledge. This allows other applications to

14 Chapter #

specify their service semantics separate from the context semantics and
furthermore allows the context selection e.g. been inplemented and searched
for via database queries. Requirement 7 is fulfilled by the use of a registry
service. The registry service allows the lookup of service details to provide
the user with the service URL.

5. IMPLEMENTATION OF PROTOTYPE

The prototype implementation is shown in Figure 5. The implementation
is centred around the context and services ontologies that structure
knowledge about the domain for the purposes of presentation and searching
of services. The matchmaking engine performs the semantic match of the
requested service with the provided services. This allows close and flexible
matches of the matchmaking process. This prototype is based on Web
services technology standards. The user interface is developed with Java
Server Pages (JSPs). The communication from the JSPs with the underlying
process is done with JavaBeans. The implementation of the Web services
was done in Java using WSDL, XML and SOAP. The UDDI registry is used
for the final selection stage which is the registry selection. The actual service
is matched with the service request depending on the ontologies loaded.

Figure 5. Prototype Implementation.

The heart of the portal implementation is the semantic matchmaking. The

OWL parser parses the context and services ontologies. With a defined set of
rules the inference engine reasons about the ontologies and with the matched

#. CONTEXT-AWARE ONTOLOGY SELECTION FRAMEWORK 15

results a lookup in the UDDI registry is performed. The services get then
displayed in the user portal, where the user can select the appropriate service
from the list.

For the context and services ontologies OWL was chosen as it provides a
representative notion of semantics for describing the context and services.
OWL allows subsumption reasoning on concept taxonomies. Furthermore,
OWL permits the definition of relations between concepts. For the inference
engine rules were defined using the JESS (Java Expert Systems Shell)
language [23]. The JESS API (Application Programming Interface) is
intended to facilitate interpretation of information of OWL files, and it
allows users to query on that information. It leverages the existing RDF API
to read in the OWL file as a collection of RDF triples.

JESS was chosen as a rule-based language for the prototype as it provides
the functionality for defining rules and queries in order to reason about the
ontologies specified. JESS is an expert system shell and scripting language
written entirely in the Java language. JESS supports the development of rule-
based expert systems which can be tightly coupled to code written in the
portable Java language. JESS is a forward chaining production system that
uses the Rete algorithm [24]. The Rete algorithm is intended to improve the
speed of forward-chained rule systems by limiting the effort required to
recompute the conflict set after a rule is fired. Its drawback is that it has high
memory space requirements. In the prototype implementation, queries
depending on the specified ontology and service definition structure are
specified. These get called whenever a search request is performed by the
user. The search request is given by search parameters the user specifies. If
datatypes, in JESS syntax PropertyValue, of a defined class should be
found then the defquery in Figure 6 is invoked.

(defquery query-for-class-of-a-given-property
"Find the class to a given property."
 (declare (variables ?class))
 (triple
 (predicate "http://www.w3.org/2000/01/rdf-schema #domain")
 (subject ?class)
 (object ?x)
)
)

Figure 6. JESS Rule.

With such queries, reasoning about classes of the ontology is achieved

with the matching modules and works as follows. The context ontology is
parsed by a OWL parser. The attributes and classes of OWL describe the
concept of the ontology. The service request is being matched semantically
by parsing the context and services ontology and the application of the rules
defined. The OWL code facilitates effective parsing of service capabilities

16 Chapter #

through its use of generic RDF(S) symbols compared with OWL specific
symbols. With a defined set of rules an inference engine reasons about the
value parameters parsed from the ontology. Other rules implemented include
sub-classing, datatype, object and functional properties.

6. APPLICATION EXAMPLE

An application scenario was chosen to demonstrate the usability of the
approach. It is assumed that many e-shopping web services are available on
the Web. These can be any kind of services e.g. Amazon, eBay, etc.,
wrapped as web services offering different goods to buy such as Books,
Bikes and CDs. It is furthermore assumed that in most cases a client searches
for a service not knowing the service name. The user only specifies a service
request with a few keywords describing the service needs. For this scenario a
context ontology was created supplying the categories of services for e-
shopping.

Figure 7. Context Hierarchy.

This ontology, shown in Figure 7, lists the contexts chosen which

represent Food, Clothes, Bikes, Cars, Shoes, Books and CDs. The underlying
classes show many associative links to the different categories. These are
normally linked directly with the category class, however for the ease of the

#. CONTEXT-AWARE ONTOLOGY SELECTION FRAMEWORK 17

reader this single-structured hierarchy was used. In addition, it only shows
the classes of the context hierarchy but not the attributes.

Each of the classes belonging to one of the categories contains attributes
describing the class further. E.g. class Business contains the attributes
computing, reading, etc. For a special application domain the two identical
attributes in more than one class could be eliminated. However, if context
ontologies would be reused from other sources this can not be disqualified.
The prototype implementation solves the problem by taking the additional
context parameters into account to eliminate the “wrong” context. If the user
only specifies one context parameter which matches two categories then the
prototype returns a mismatch statement.

Figure 8 shows the fragment of the OWL description of the context
ontology showing class (<owl:Class rdf:ID="Services"/>) and subclass
(<owl:Class rdf:ID="Services"/>) relationships. An OWL ontology is made
up of several components, some of which are optional, and some of which
may be repeated. OWL constructs are presented in a structured format
including RDF triples as shown below.

<?xml version="1.0"?>

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns="http://www.cs.cardiff.ac.uk/ontologies/context.owl#"

 xml:base="http://www.cs.cardiff.ac.uk/ontologies/context.owl">

 <owl:Ontology rdf:about=""/>

 <owl:Class rdf:ID="Context"/>

 <owl:Class rdf:ID="Road"><rdfs:subClassOf><owl:Class rdf:ID="Bikes"/>
 </rdfs:subClassOf></owl:Class>

 <owl:Class rdf:ID="Books"><rdfs:subClassOf
 rdf:resource="#Context"/></owl:Class>

 <owl:Class rdf:ID="Triathlon"><rdfs:subClassOf><owl:Class
 rdf:about="#Bikes"/></rdfs:subClassOf></owl:Class>

 <owl:Class rdf:about="#Bikes"><rdfs:subClassOf
 rdf:resource="#Context"/></owl:Class>

 <owl:Class rdf:ID="Racing"><rdfs:subClassOf
 rdf:resource="#Bikes"/></owl:Class>

 <owl:Class rdf:ID="Food"><rdfs:subClassOf
 rdf:resource="#Context"/></owl:Class>

 <owl:Class rdf:ID="Shopping"><rdfs:subClassOf
 rdf:resource="#Bikes"/></owl:Class>

...

</rdf:RDF>

Figure 8. Fragment of OWL Context Ontology.

18 Chapter #

In Figure 9, the structure of the e-shopping services ontology is shown.
The first level contains the corresponding categories of the context ontology.
The second level represent the actual service implementation with the
attributes below. Given in this hierarchy is only one service specification
outlining the Books web service. Different service implementations are
BookBuy, Bookshop, BuyBooks, Books and BookSale.

Figure 9. Services Hierarchy.

Figure 10 shows part of the OWL file of the services ontology. In this

service ontology not only class (<owl:Class rdf:ID="Services"/>) and
subclass (<owl:Class rdf:ID="Services"/>) relationships are declared but
also data type property relationships (<owl:DatatypeProperty
rdf:ID="Price">) describing the attributes of the service.

How the process from service request to service response works is shown
next. The user issues the following service request shown in Figure 11
consisting of context attributes and service attributes.

#. CONTEXT-AWARE ONTOLOGY SELECTION FRAMEWORK 19

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns="http://www.cs.cardiff.ac.uk/ontologies/services.owl#"
 xml:base="http://www.cs.cardiff.ac.uk/ontologies/services.owl">
 <owl:Ontology rdf:about=""/>
 <owl:Class rdf:ID="Services"/>
 <owl:Class rdf:ID="Cars"><rdfs:subClassOf

 rdf:resource="#Services"/></owl:Class>
 <owl:Class rdf:ID="ServiceRacer"><rdfs:subClassOf><owl:Class

 rdf:ID="Bikes"/></rdfs:subClassOf></owl:Class>
 <owl:Class rdf:ID="Books"><rdfs:subClassOf

 rdf:resource="#Services"/></owl:Class>
 <owl:Class rdf:about="#Bikes<owl:Class rdf:ID="Services"/></owl:Class>
 <owl:Class rdf:ID="Food"><rdfs:subClassOf rdf:resource="#Services"/>
 </owl:Class>
 <owl:Class rdf:ID="CDs"><rdfs:subClassOf rdf:resource="#Services"/>
 </owl:Class>
 <owl:DatatypeProperty rdf:ID="Price">
 <rdfs:domain rdf:resource="#ServiceRacer"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="CatalogueNumber">
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="#ServiceRacer"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="NumberOfGears">
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="#ServiceRacer"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="WheelSize">
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="#ServiceRacer"/>
 </owl:DatatypeProperty>
 <owl:DatatypeProperty rdf:ID="FrameSize">
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="#ServiceRacer"/>
 </owl:DatatypeProperty>
...
</rdf:RDF>

Figure 10. Fragment of OWL Services Ontology.

The user has the choice of either specifying the name of the service or the

rest of the service request file (attributes, description, metadata and weights).
In most cases the user will not know the name of the service, therefore the
name tag will remain unspecified. The user will specify service request
parameters for either only the attribute section or all of the categories
attributes, description and metadata. The weight values can be defined
according to the user’s preference. The context attributes are first taken and
the context ontology is queried using these search attributes resulting in the
context keyword Books which is used for the service search part. The
services ontology is then reasoned by using the context keyword and the
service attributes specified in the service request query. All the retrieved
services (BookBuy, Bookshop, BuyBooks, Books and BookSale) are then
calculated using the match score metric, in order to identify the ranking of

20 Chapter #

the service result set. After these services are matched the service details are
retrieved from the registry and returned to the user.

<ServiceRequest>

 <Name>
 <parameter name=”” value=””>
 </Name>

 <Attributes>
 <ContextAttributes>
 <parameter name=”computer” value=””>
 <parameter name=”reading” value=””>
 </ContextAttributes>
 <ServiceAttributes>
 <parameter name=”title” value=””>
 <parameter name=”author” value=””>
 <parameter name=”isbn” value=””>
 <parameter name=”category” value=””>
 <parameter name=”price” value=””>
 <parameter name=”pages” value=””>
 </ServiceAttributes>
 </Attributes>

 <Description>
 <parameter name=”description” value=”This guide discusses Information

 Retrieval data structures and algorithms”>
 </Description>

 <Metadata>
 <parameter name=”attribute1”

 value=”http://www.amazon.com/exec/obidos/tg/detail/-
 /0134638379/102-2173778-1724124?v=glance”>
 <parameter name=”attribute2”

 value=”http://www.amazon.com/gp/reader/0134638379/
 ref=sib_dp_pt/102-2173778-1724124#reader-link”>
 </Metadata>

 <Weights>
 <parameter name=”attributes” value=”0.5”>
 <parameter name=”description” value=”0.3”>
 <parameter name=”metadata” value=”0.2”>
 </Weights>

</ServiceRequest>

Figure 11. Example of Service Request.

7. EVALUATION OF PROTOTYPE

The purpose of this section is to show that the prototype implementation
satisfies the performance requirements as applied in real-world applications
and most importantly to show the quality improvement of the matches.
Three different set of evaluation measures were carried out. These are
performance measurements, precision and recall measurements and match
score measurements.

EITHER

OR

#. CONTEXT-AWARE ONTOLOGY SELECTION FRAMEWORK 21

7.1 Performance Measurements

Measurements were carried out to investigate the performance of the
prototype. Ten measurements were taken to quantify the time needed to
fulfill a service request. Only the service discovery process was measured
(without an actual service call) as the primary focus was the matchmaking.

Figure 12. Performance Measurements.

Figure 12 shows that the average time of a search request to be matched

is 2338ms. The distribution shows a variation of ± 21ms of the average
result. This is a quite acceptable performance outcome in comparison to real-
world applications. However, the ontology size might be much bigger for
real-world applications which needs to be investigated next.

Another set of performance measurements of the prototype were
conducted in order to see how the behaviour of the performance over the
complexity of an ontology varies. Only the services ontology was enabled
having the context ontology part disabled providing the search request with
the context attribute. The measurement setting had the following conditions.
All nine ontologies of different complexity levels were placed on the Internet
and retrievable by a URL, so that real world measurements could be
conducted. The complexity of 1 of the ontology is defined as having 112
elements, thereof 47 classes and 65 data type properties. Complexity 2 is the
double amount of elements. Having complexity 16 results in 1792 elements,
where 752 are classes and 1040 are data type properties.

Figure 13 shows the performance measurements of the prototype with
respect to ontology complexity. The graph shows a linear distribution. The
regression line shows an average increase of about 700ms per increase of

22 Chapter #

complexity of the ontology. There is an offset of about 2000ms which is due
to the instantiation and resetting of the reasoning engine and the rules and
queries applied. As expected, the flexible and powerful matchmaker has a
disadvantage which is a reduced performance, in particular for large
ontologies. The results highlight the linear degradation in performance
exhibited by the search. If only a keyword based approach was desired the
performance would be better. However, for small and medium size
ontologies (up to 1000 elements) the evaluation shows an acceptable
performance.

Figure 13. Performance versus Ontology Complexity.

As expected, the additional functionality results in a lower performance

shown in the linear performance decrease by an increase in complexity of
the ontology. However, the prototype approach achieves an increase in the
quality of service matches. Therefore, precision and recall measurements
were taken to show the quality improvement for this semantic approach.

7.2 Precision and Recall Measurements

The evaluation is done by calculating precision and recall rates. Consider
a set of relevant services (R) within a set of advertised services (A). Ra is
the number of services in the intersection of the sets R and A .
Precision is the fraction of advertised services which are relevant i.e.,

A
Ra

PRECISION = . The highest number is returned when only relevant

services are retrieved.

#. CONTEXT-AWARE ONTOLOGY SELECTION FRAMEWORK 23

Recall is the fraction of relevant services which have been retrieved i.e.,

R
Ra

RECALL = . The highest number is returned when all relevant

services are retrieved.

For the evaluation of precision and recall values a comparison of a
keyword-based approach with the prototype approach was conducted. Even
though the matching algorithm considers all service categories (service
name, service attributes, service descriptions, metadata) for this evaluation
only the service attributes were taken into consideration focusing on book
services.

Table 1. Relevant services.

Table 1 shows the relevant services. All attributes shown in the table are

the service attribute parameters used for this evaluation. Matches are
indicated in bold.

Table 2. Irrelevant Services.

24 Chapter #

Table 2 shows the irrelevant services. The attributes indicated in bold
match with the extended context ontology taken for this experiment,
however the context parameters do not match the Book category. The
number of service attributes is the same for relevant and irrelevant services.

The service requests are similar to the one shown in Figure 11. The
context parameters define the category of the service request which results in
the split of the two tables (Table 1 and 2) being relevant services and
irrelevant services. The user wants to find Book shop services and specifies a
service request 1 with the parameters as stated in Figure 12 which are
exactly the parameters specified for service 1 in Table 1. Service request 2 is
specified with the parameter of service 2 (Table 1) and so on. The context
parameters are always the same as defined in Figure 11.

Table 3 shows the request and the matches comparing the keyword-based
approach with the prototype approach. It shows that only the keyword-based
approach returns irrelevant matches as the prototype was customized. Figure
14 shows the results of the precision and recall values. The precision and
recall results of the keyword-based approach range between 20% and 70%,
whereby the prototype approach achieved a precision and retrieval rate of
100% in this experimental setup. As the recall and precision rates from the
prototype show higher values than the rates from the keyword-based
approach, it shows that the user receives a better subset of services that are
relevant and in addition, the user receives fewer services that are irrelevant.

Table 3. Request and matches.

Due to the fact that this research is conducted in a limited application

domain, the set of advertised services, query and ontology are highly adapted
and therefore a result of 100% is retrieved. In a real-world application
scenario this correlation might not always be that high, especially if the
context ontology is used from third-parties.

#. CONTEXT-AWARE ONTOLOGY SELECTION FRAMEWORK 25

Figure 14. Evaluation of Precision and Recall Values.

The accomplished result of service matches does not state that in every

application scenario always values of 100% are achieved but it indicates the
improvement in quality of service discovery results using this semantic
approach.

7.3 Match Score Measurements

The precision and recall measurements showed that the quality of the
return of service matches is increased. However, to ensure a ranking process
to indicate which returned services match best, the match score values were
introduced. The service requests were the same as the ones from the
precision and recall measurements (Figure 11) with the additional
parameters for description and metadata. The weight values were set to 1/3
for service attributes, service descriptions and metadata information
respectively. Table 4 shows the match scores for the five service requests.

Table 4. Match Scores.

26 Chapter #

The match scores are vital in a matching system where due to the
semantic matching process the quality of service matches is increased but
whereby the user needs to be given a ranked service result set in order to
indicate the best matches. Best matches are those with the highest similarity
in comparison to the service request.

Figure 15 shows the distribution of match scores for the five service
requests. The average match score is 0.479. This shows that providing the
user with three categories (service attributes, service description and
metadata information) allows specifying the service request more flexibly.
The weight values can be specified by the user as a confidence value
indicating which of the three categories are more important than the others.

Figure 15. Match Scores Diagram.

7.4 Summary

As seen by the performance measurements the additional semantic
feature results in a lower performance, however a higher precision for
service matches is achieved. In particular, an acceptable performance is
achieved for small and medium sized ontologies. The fact of the linear
decrease of performance for growing ontologies needs to be considered
carefully at design time. The choice of a “faster” reasoning engine might
improve the matchmaking speed. Precision and recall measures showed the
increase of quality of service matches, which was achieved by the
customization and use of the context and services ontologies. The only
problem is that the user might be overwhelmed by the number of service

#. CONTEXT-AWARE ONTOLOGY SELECTION FRAMEWORK 27

responses, therefore the match score values are vital. The match score values
are a good measure to firstly rank the service responses and secondly restrict
matches where the match score is smaller than a certain threshold value. The
evaluation of the prototype showed a significantly improved precision of
service matches.

8. CONCLUDING REMARKS

The contextual information enhances the expressiveness of the matching
process, i.e. by adding semantic information to services, and also serves as
an implicit input to a service that is not explicitly provided by the user. The
introduction of match scores serves as a selection criterion for the user to
choose the best match. The prototype approach facilitates interoperability as
the context and service properties are defined and specified in associated
ontologies. Re-writing of code or interface wrapping does not need to be
done in order to make systems interoperable. The development and
maintenance is much easier due to the modular structure and encapsulation
of context matching, service matching and registry selection. Whenever a
service is added only an entry in the services ontology needs to be included
and the service details need to be registered in the registry. The rules defined
in the reasoning engine do not need to be modified and the service discovery
process is not affected at all when adding services. This is a very important
feature for modern information systems, and especially for Web services,
where interoperability is a major issue. A drawback of this approach is that
users registering services need to know the category their services belong to.
Cases where a service falls into more than one category need to be
registricted in order to allow an automatic and precise discovery and
selection of service matches.

9. REFERENCES

1. J. McGovern, S. Tyagi, M. Stevens, S. Mathew, The Java Series Books -
Java Web Services Architecture, Chapter 2, Service Oriented
Architecture, 2003.

2. HTTP - Hypertext Transfer Protocol, W3C, 2004.
http://www.w3.org/Protocols/.

3. Extensible Markup Language (XML), W3C, 2004.
http://www.w3.org/XML/.

4. UDDI Technical White Paper.
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf.

28 Chapter #

5. Web Services Description Language (WSDL) 1.1, W3C, 2004.

http://www.w3.org/TR/wsdl.
6. SOAP Version 1.2, W3C, 2004.

http://www.w3.org/TR/soap/.
7. W3C Working Draft, “Requirements for a Web Ontology Language”.

http://www.w3.org/TR/webont-req/.
8. T.R. Gruber, ONTOLINGUA: A Mechanism to Support Portable

Ontologies, Version 3.0, Technical Report KSL 91-66, Knowledge
Systems Laboratory, Department of Computer Science, Stanford
University, 1992.

9. M. Uschold, M. Gruninger, Ontologies: Principles, Methods and
Applications, Knowledge Engineering Review, 1996, 11-2.

10. S.A. Ludwig, A Semantic Approach To Service Discovery In A Grid
Environment, Ph.D. Thesis, Brunel University, UK, 2004.

11. A. ShaikhAli, O. Rana, R. Al-Ali, D.W. Walker, UDDIe: An Extended
Registry for Web Services, Proceedings of the Service Oriented
Computing: Models, Architectures and Applications, SAINT-2003,
Orlando, USA, 2003.

12. U. Keller, R. Lara, A. Polleres, I. Toma, M. Kifer, D. Fensel, WSML
Deliverable – WSMO Web Service Discovery, WSML Working Draft,
2004.

13. D.J. Mandell, S.A. McIlraith, A Bottom-Up Approach to Automating
Web Service Discovery, Customization, and Semantic Translation,
Proceedings of the 12th International World Wide Web Conference,
Workshop on E-Services and the Semantic Web(ESSW'03), Budapest,
2003.

14. R. Fikes, P. Hayes, I. Horrocks, DAML Query Language, Abstract
Specification, 2002.

15. D. Chakraborty, F. Perich, S. Avancha, and A. Joshi, Dreggie: Semantic
service discovery for m-commerce applications, Workshop on Reliable
and Secure Applications in Mobile Environment, 20th Symposium on
Reliable Distributed Systems, New Orleans, LA, October 2001.

16. S. Avancha, A. Joshi, T.W. Finin, Enhanced Service Discovery in
Bluetooth, IEEE Computer 35(6): 96-99, 2002.

17. E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, A.
Lazzarini, A. Arbree, R. Cavanaugh, S. Koranda, Mapping Abstract
Complex Workflows onto Grid Environments, Journal of Grid
Computing, Vol. 1, No. 1, pp 9--23, 2003.

18. H. Tangmunarunkit, S. Decker, C. Kesselman, Ontology-based Resource
Matching in the Grid - The Grid meets the Semantic Web, Proceedings
of the First Workshop on Semantics in Peer-to-Peer and Grid Computing

#. CONTEXT-AWARE ONTOLOGY SELECTION FRAMEWORK 29

(SemPG03), In conjunction with the Twelfth International World Wide
Web Conference 2003, Budapest, Hungary, May 2003.

19. The XSB Research Group.
http://xsb.sourceforge.net.

20. H. Lieberman et al. Out of context: Computer systems that adapt to, and
learn from, context, IBM system journal, Volume 39, Numbers 3 & 4,
MIT Media Laboratory, 2000.

21. A. Dey, Providing Architectural Support for Context-Aware applications,
Thesis, Georgia Institute of Technology, November 2000.

22. M. Paolucci, T. Kawamura, T.R. Payne, K. Sycara, Semantic Matching
of Web Services Capabilities, Proceedings International Semantic Web
Conference (ISWC 02), 2002.

23. JESS, Java Expert Systems Shell.
http://herzberg.ca.sandia.gov/jess/docs/61/index.html.

24. C.L. Forgy, Rete: A Fast Algorithm for the Many Pattern/Many Object
Pattern Match Problem, Journal of Artificial Intelligence 1982, 19-17-37.

