
 61

CHAPTER 5. PAPER 1:

FAST RULE-BASED CLASSIFICATION USING P-TREES

5.1. Abstract

Lazy classification does not require construction of a classifier. Decisions can,

therefore, be based on the properties of the particular unknown sample rather than the set of

all possible samples. We introduce a rule-based classifier that uses neighborhood

membership rather than static intervalization to break up continuous domains. A distance

function that makes neighborhood evaluation efficient for the P-tree data structure is

chosen. We discuss information gain and statistical significance in a unified framework

and observe that the commonly used formulation of information gain can be seen as an

approximation to the exact entropy. A new algorithm for constructing and combining

multiple classifiers is introduced and its improved performance demonstrated, especially

for data sets with many attributes.

5.2. Introduction

Many data mining tasks involve predicting a discrete class label, such as whether a

patient is sick, whether an e-mail message is spam, etc. Eager classification techniques

construct a classifier from the training data before considering unknown samples. Eager

algorithms include decision tree induction, which fundamentally views data as categorical

and discretizes continuous data as part of the classifier construction [1]. Lazy classification

predicts the class label attribute of an unknown sample based on the entire training data.

Lazy versions of decision tree induction improve classification accuracy by using the

information gain criterion based on the actual values of the unknown sample [2]. This

 62

modification reduces the fragmentation, replication, and small disjunct problems of

standard decision trees [3]. Previous work has, however, always assumed that the data

were discretized as a preprocessing step.

Many other lazy techniques use distance information explicitly through window or

kernel functions that select and weight training points according to their distance from the

unknown sample. Parzen window [4], kernel density estimate [5], Podium [6], and

k-nearest neighbor algorithms can be seen as implementations of this concept. The idea of

using similarity with respect to training data directly is not limited to lazy classification.

Many eager techniques exist that improve on the accuracy of a simple kernel density

estimate by minimizing an objective function that is a combination of the classification

error for the training data and a term that quantifies complexity of the classifier. These

techniques include support vector machines and regularization networks as well as many

regression techniques [7]. Support vector machines often have the additional benefit of

reducing the potentially large number of training points that have to be used in classifying

unknown data to a small number of support vectors.

Kernel- and window-based techniques, at least in their original implementation, do

not normally weight attributes according to their importance. For categorical attributes,

this limitation is particularly problematic because it only allows two possible distances for

each attribute. In this paper, we assume distance 0 if the values of categorical attributes

match and 1 otherwise. Solutions that have been suggested include weighting attribute

dimensions according to their information gain [8]; optimizing attribute weighting using

genetic algorithms [9]; selecting important attributes in a wrapper approach [10]; and, in a

more general kernel formulation, boosting as applied to heterogeneous kernels [11].

 63

We combine the concept of a window that identifies similarity in continuous

attributes with the lazy decision tree concept of [2] that can be seen as an efficient attribute

selection scheme. A constant window function (step function as a kernel function) is used

to determine the neighborhood in each dimension with attributes combined by a product of

window functions. The window size is selected based on information gain. A special

distance function, the HOBbit distance, allows efficient determination of neighbors for the

P-tree data structure [12] that is used in this paper. A P-tree is a bit-wise, column-oriented

data structure that is self-indexing and allows fast evaluation of tuple counts with given

attribute value or interval combinations. For P-tree algorithms, database scans are replaced

by multi-way AND operations on compressed bit sequences.

Section 5.3 discusses the Algorithm with Section 5.3.1 summarizing the P-tree data

structure, Section 5.3.2 motivating the HOBbit distance, and Section 5.3.3 explaining how

we map to binary attributes. Section 5.3.4 gives new insights related to information gain;

Section 5.3.5 discusses our pruning technique; and Section 5.3.6 introduces a new way of

combining multiple classifiers. Section 5.4 presents our experimental setup results, with

Section 5.4.1 describing the data sets, Sections 5.4.2-5.4.4 discussing the accuracy of

different classifiers, and Section 5.4.5 demonstrating performance. Section 5.5 concludes

the paper.

5.3. Algorithm

Our algorithm selects attributes successively using information gain based on the

subset of points selected by all previously considered attributes. The procedure is very

similar to decision tree induction, e.g., [1], and, in particular, lazy decision tree induction

 64

[2] but has a few important differences. The main difference lies in our treatment of

continous attributes using a window or kernel function based on the HOBbit distance

function. Since a window function can be seen as a lazily constructed interval, it is

straightforward to integrate into the algorithm.

Eager decision tree induction, such as [1], considers the entire domain of

categorical attributes to evaluate information gain. Lazy decision tree induction, including

[2], in contrast, calculates information gain and significance based on virtual binary

attributes that are defined through similarity with respect to a test point. Instead of

constructing a full tree, one branch is explored in a lazy fashion; i.e., a new branch is

constructed for each test sample. The branch is part of a different binary tree for each test

sample. Note that the other branches are never of interest because they correspond to one

or more attributes being different from the test sample. We will, therefore, use the term

rule-based classification since the branch can more easily be seen as a rule that is

evaluated.

5.3.1. P-trees

The P-tree data structure was originally developed for spatial data [13] but has been

successfully applied in many contexts [9,14]. The key ideas behind P-trees are to store data

column-wise in hierarchically compressed bit-sequences that allow efficient evaluation of

bit-wise AND operations based on an ordering of rows that benefits compression. The

row-ordering aspect can be addressed most easily for data that show inherent continuity

such as spatial and multi-media data. For spatial data, for example, neighboring pixels will

often represent similar color values. Traversing an image in a sequence that keeps

 65

neighboring points close will preserve the continuity when moving to the one-dimensional

storage representation. An example of a suitable ordering is Peano, or recursive raster

ordering. If data show no natural continuity, sorting it according to generalized Peano

order can lead to significant speed improvements. The idea of generalized Peano order

sorting is to traverse the space of data mining-relevant attributes in Peano order while

including only existing data points. Whereas spatial data do not require storing spatial

coordinates, all attributes have to be represented if generalized Peano sorting is used, as is

the case in this paper. Only integer data types are traversed in Peano order since the

concept of proximity does not apply to categorical data. The relevance of categorical data

for the ordering depends on the number of attributes needed to represent it. Figure 5.1

shows how two numerical attributes are traversed together with the P-tree that is

constructed from the sequence of the highest order bit of x.

Figure 5.1. Peano order sorting and P-tree construction.

P-trees are data structures that use hierarchical compression. The P-tree graph

shows a tree with fan-out 2 in which 1 stands for nodes that represent only 1 values, 0

stands for nodes that represent only 0 values, and m ("mixed") stands for nodes that

 66

represent a combination of 0 and 1 values. Only "mixed" nodes have children. For other

nodes, the data sequence can be reconstructed based on the purity information and node

level alone. The P-tree example is kept simple for demonstration purposes. The

implementation has a fan-out of 16 and uses an array rather than pointers to represent the

tree structure. It, furthermore, stores the count of 1-bits for all nodes to improve ANDing

speed. For data mining purposes, we are mainly interested in the total number of 1-bits for

the entire tree, which we will call root count in the following sections.

5.3.2. HOBbit Distance

The nature of a P-tree-based data representation with its bit-column structure has a

strong impact on the kinds of algorithms that will be efficient. P-trees allow easy

evaluation of the number of data points in intervals that can be represented by one bit

pattern. For 8-bit numbers, the interval [0,128) can easily be specified by requiring the

highest-order bit to be 0 and not putting any constraints on the lower-order bits. This

specification is derived as the root count of the P-tree corresponding to the highest-order

bit. The interval [128,194) can be defined by requiring the highest order bit to be 1 and the

next bit to be 0, and not putting constraints on any other bits. The number of points within

this interval is evaluated by computing an AND of the basic P-tree corresponding to the

highest-order bit and the complement of the next highest-order bit. Arbitrary intervals can

be defined using P-trees but may require the evaluation of several ANDs.

 This observation led to the definition of the HOBbit distance for numerical data.

Note that for categorical data, which can only have either of two possible distances,

distance 0 if the attribute values are the same and 1 if they are different, bits are equivalent.

 67

The HOBbit distance is defined as







≠



≠



+

=
= ∞

= tsj
t

j
s

j

ts

tsHOBbit aaaaj

aa
aad for)

22
|1(max

for0
),(

0

 (1)

where as and at are attribute values, and   denotes the floor function. The HOBbit

distance is, thereby, the number of bits by which two values have to be right-shifted to

make them equal. The numbers 32 (10000) and 37 (10101) have HOBbit distance 3

because only the first two digits are equal, and the numbers, consequently, have to be right-

shifted by 3 bits.

5.3.3. Virtual Binary Attributes

For the purpose of the calculation of information gain, all attributes are treated as

binary. Any attribute can be mapped to a binary attribute using the following prescription.

For a given test point and a given attribute, a virtual attribute is assumed to be constructed,

which we will call a. Virtual attribute a is 1 for the attribute value of the test sample and 0

otherwise. For numerical attributes, a is 1 for any value within the HOBbit neighborhood

of interest and 0 otherwise. Consider, as an example, a categorical attribute that represents

color and a sample point that has attribute value "red." Attribute a would (virtually) be

constructed to be 1 for all "red" items and 0 for all others, independently of how large the

domain is. For a 5-bit integer attribute, a HOBbit neighborhood of dHOBbit=3, and a sample

value of 37, binary attribute a will be imagined as being 1 for values in the interval [32,48)

and 0 for values outside this interval. The class label attribute is a binary attribute for all

data sets that we discuss in this paper and therefore does not require special treatment.

 68

5.3.4. Information Gain

We can now formulate information and information gain in terms of imagined

attribute a as well as the class label. The information concept was introduced by Shannon

in analogy to entropy in physics [15]. The commonly used definition of the information of

a binary system is

()110010 loglog),(ppppppInfo +−= , (2)

where p0 is the probability of one state, such as class label 0, and p1 is the probability of the

other state, such as class label 1. The information of the system before attribute a has been

used can be seen as the expected information still necessary to classify a sample. Splitting

the set into those tuples that have a = 0 and those that have a = 1 may give us useful

information for classification and, thereby, reduce the remaining information necessary for

classification. The following difference is commonly called the information gain of

attribute a







−





−





=

y
y

y
y

Info
t
y

x
x

x
x

Info
t
x

t
t

t
t

InfoaInfoGain 101010 ,,,)((3)

with x (y) being the number of training points for which attribute a has value 0 (1) and

t = x + y. x0 refers to the number of points for which attribute a and the class label are 0; y0

refers to the number of points for which attribute a is 1 and the class label is 0; etc.

Appendix B shows how this definition of information gain can be derived from the

probability associated with a 2x2 contingency table. It is noted that, in this derivation, an

approximation has to be made, namely Stirling’s approximation of a factorial

(nnnn −≅ log!log), which is only valid for large numbers. An exact expression for the

information is derived as

 69

()!log!log!log
1

),,(2110 xxx
x

xxxExactInfo −−= (4)

The derivation suggests that the natural logarithm be used in (4). Using the binary

logarithm leads to a result that differs by a constant scaling factor that can be ignored. The

corresponding definition of information gain is

),,(),,(),,()(101010 yyyExactInfo
t
y

xxxExactInfo
t
x

tttExactInfoaainExactInfoG −−= (5)

Figure 5.2 compares InfoGain (4) and ExactInfoGain (5) for a system with x = 250, y = 50,

x1 = 50, and y1 varying from 0 to 50. Note that the expression for information (4) strictly

follows from the equivalence between information and entropy that Shannon noted [15]. In

a physical system, entropy is defined as

Ω= logkS , (6)

where k is Bolzmann’s constant and Ω is the number of microstates of the system, leading

an expression that is proportional to (4) for a binary system. Since Stirling’s approximation

is valid for most physical systems and logn! could not easily be evaluated for the 1023

particles that are typical for physical systems, (2) is more commonly quoted than the exact

expression. Note that, in decision tree induction where information gain is used in

branches with very few samples, numbers are not necessarily as large as they are in

physical systems. It could, therefore, be practical from a computational perspective to use

the exact definition. The logarithm of a factorial is, in fact, commonly used for

significance calculations in decision tree induction and is, thereby, readily available. The

difference in performance between both definitions is clearly noticeable for our algorithm,

but unfortunately, we will see that the approximate definition performs better under most

circumstances. This poor performance may, however, be due to the setup of our algorithm.

 70

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50

y1

InfoGain

ExactInfoGain

 Figure 5.2. InfoGain and ExactInfoGain for x = 250, y = 50, and
 x1 = 50.

One noteworthy difference between both formulations of information gain is that

(3) vanishes for ttyyxx 111 == , whereas (5) does not, except in the limit of large

numbers. In the exact formulation, information is, therefore, gained for any split, which is

correct: If a set contains two data points with class label 0 and two with class label 1, then

there are 6
2
4

=





 ways in which these class labels could be distributed among the four data

points. Assume that attribute a is 0 for one data point of each class label. The number of

configurations after the split will then only be 4
1
2

2 =





. We have gained information

about the precise system of the training points. Whether the exact formulation generally

helps reduce the generalization error, which is the quantity of interest in classification of an

unknown sample, is yet to be determined.

 71

It is interesting to analyze systematically in what way ExactInfoGain differs from

InfoGain. Figure 5.3 shows the difference ExactInfoGain(x,y,x1,y1) - InfoGain(x,y,x1,y1) for

x = 250, y = 50, x1= r y1 with y1 varying from 1 to 50, and different values for r.

0

0.002

0.004

0.006

0.008

0.01

0.012

0 10 20 30 40 50

y1

E
xa

ct
In

fo
G

ai
n

- I
nf

oG
ai

n

r = 1
r = 2
r = 3
r = 4
r = 5h

 Figure 5.3. Difference between ExactInfoGain and InfoGain.

It can clearly be seen that ExactInfoGain favors attributes that split the training set

evenly. Note that the contribution depends very little on the absolute value of information

gain. r = 5 corresponds to a split for which InfoGain = 0 independently of y1 while r = 1

corresponds to a split with high information gain (Both InfoGain and ExactInfoGain are

high.) The difference between both, however, differs by less than 10% over the entire

range.

It should finally be noted that Shannon [15] strictly introduced the information Info

based on its mathematical properties, i.e., as a function that satisfies desirable conditions,

and only noted in passing that it also was the well-known formulation of physical entropy.

 72

5.3.5. Pruning

It is well known that decision trees have to be pruned to work successfully [1].

Information gain alone is, therefore, not a sufficient criterion to decide which attributes to

use for classification. We use statistical significance as a stopping criterion, which is

similar to decision tree algorithms that prune during tree construction. The calculation of

significance is closely related to that of information gain. Appendix B shows that not only

significance, but also information gain can be derived from contingency tables.

Information gain is a function of the probability of a particular split under the assumption

that a is unrelated to the class label, whereas significance is commonly derived as the

probability that the observed split or any more extreme split would be encountered; i.e., it

represents the p-value. This derivation explains why information gain is commonly used to

determine the best among different possible splits, whereas significance determines

whether a particular split should be done at all.

In our algorithm, significance is calculated on different data than information gain

to get a statistically sound estimate. The training set is split into two parts, with two-thirds

of the data being used to determine information gain and one-third to test significance

through Fisher’s exact test, where the two-sided test was approximated by twice the value

of the one-sided test [16]. A two-sided version was also implemented, but test runs showed

that it was slower and did not lead to higher accuracy. An attribute is considered relevant

only if it leads to a split that is significant, e.g., at the 1% level. The full set is then taken to

determine the predicted class label through majority vote.

 73

5.3.6. Pursuing Multiple Paths

The number of attributes that can be considered in a decision tree like setting while

maintaining a particular level of significance is limited. This limitation is a consequence of

the "curse of dimensionality" [5]. To get better statistics, it may, therefore, be useful to

construct different classifiers and combine them. A similar approach is taken by bagging

algorithms [17]. We use a very simple alternative in which several branches are pursued,

each starting with a different attribute. The attributes with the highest information gain are

picked as starting attributes, and branches are constructed in the standard way from

thereon. Note that the number of available attributes places a bound on the number of

paths that can be pursued. The votes of all branches are combined into one final vote. This

modification leads to a particularly high improvement for data sets with many attributes.

For such data sets, each rule only contains a small subset of the attributes. Deriving several

rules, each starting with a different attribute, gives some attributes a vote that would not

otherwise have one.

5.4. Implementation and Results

We implemented all algorithms in Java and evaluated them on 7 data sets. Data

sets were selected to have at least 3000 data points and a binary class label. Two-thirds of

the data were taken as a training set and one-third as a test set. Due to the consistently

large size of data sets, cross-validation was considered unnecessary. All experiments were

done using the same parameter values for all data sets.

 74

5.4.1. Data Sets

Five of the data sets were obtained from the UCI machine learning library [18]

where full documentation on the data sets is available. These data sets include the

following

• adult data set: Census data are used to predict whether income is greater than

$50,000.

• spam data set: Word and letter frequencies are used to classify e-mail as spam.

• sick-euthyroid data set: Medical data are used to predict sickness from thyroid

disease.

• kr-vs.-kp (king-rook-vs.-king-pawn) data set: Configurations on a chess board are

used to predict if "white can win."

• mushroom data set: Physical characteristics are used to classify mushrooms as

edible or poisonous.

Two additional data sets were used. A gene-function data set was generated from

yeast data available at the web site of the Munich Information Center for Protein Sequences

[19]. This site contains hierarchical categorical information on gene function, localization,

protein class, complexes, pathways and phenotypes. One function was picked as a class

label, "metabolism." The highest level of the hierarchical information of all properties

except function was used to predict whether the protein was involved in "metabolism."

Since proteins can have multiple localizations and other properties, each domain value was

taken as a Boolean attribute that was 1 if the protein is known to have the localization and 0

otherwise.

 75

A second data set was generated from spatial data. The RGB colors in the

photograph of a cornfield are used to predict the yield of the field. The data corresponded

to the top half of the data set available at [20]. Class label is the first bit of the 8-bit yield

information; i.e., the class label is 1 if yield is higher than 128 for a given pixel. Table 5.1

summarizes the properties of the data sets.

No preprocessing of the data was done. Some attributes, however, were identified

as being logarithmic in nature, and the logarithm was encoded in P-trees. The following

attributes were chosen as logarithmic: "capital-gain" and "capital-loss" of the adult data set,

and all attributes of the "spam" data set.

Table 5.1. Properties of data sets.

Number of attributes

without class label

Number of

 instances

total catego-

rical

numeri-

cal

training test

Un-

known

values

Prob. of

minority

class label

adult 14 8 6 30162 15060 no 24.57

spam 57 0 57 3067 1534 no 37.68

sick-euthyroid 25 19 6 2108 1055 yes 9.29

kr-vs-kp 36 36 0 2130 1066 no 47.75

mushroom 22 22 0 5416 2708 yes 47.05

gene-

function

146 146 0 4312 2156 no 17.86

crop 3 0 3 784080 87120 no 24.69

 76

5.4.2. Results

Table 5.2 compares the results for our rule-based algorithm with the reported results

for C4.5. It can be seen that the standard rule-based implementation tends to give slightly

poorer results, whereas using the collective vote from 20 runs that use different attributes as

first attributes leads to results that are at least comparable to C4.5. The performance on the

spam data set is comparable with the reported result of approximately 7%. A comparison

with C4.5 for all data sets is still to be done.

 Table 5.2. Results of rule-based classification.
 C4.5 Rule-based (+/-) ExactInfoGain 20 paths

adult 15.54 [UCI] 15.976 0.325703 15.93 14.934

spam 11.536 0.867191 12.125 7.11

sick-euthyroid 2.849 0.519661 3.318 2.938

kr-vs-kp 0.8 [lazy BR] 1.689 0.398049 1.689 0.844

mushroom 0 [lazy DTI] 0 0 0 0

gene-function 15.538 0.848933 15.816 15.492

crop 18.796 0.156117 20.925 19.034

5.4.3. Rule-based Results Compared with 20 Paths

For the rule-based algorithm a significance level of 1% was chosen. Information

gain was calculated on two-thirds of the training data with significance being evaluated on

the rest. The final vote was based on the entire training set. Accuracy was generally higher

 77

when a maximum of 20 paths were pursued. In this setting, accuracy improved when

information gain and significance were evaluated on the full data set with the significance

level set to 0.1%.

It can be seen in Figure 5.4 that the difference is particularly large for the spam data

set that has many continuous attributes, which is a setting in which the algorithm is

expected to work particularly well. For the crop data set, only three paths could be pursued

corresponding to the number of attributes.

20 Paths vs. 1 Path

-2

0

2

4

6

R
el

at
iv

e
A

cc
ur

ac
y

 Figure 5.4. Difference between a vote based on 20 paths and a vote based
 on 1 path in the rule-based algorithm in units of the standard error.

5.4.4. Exact Information Gain

The use of the exact formula for information gain proved to be disappointing as

Figure 5.5 shows that results tend to be poorer for the exact information gain formula (5).

A reason for this poorer performance may be that our lazy algorithm does not normally

 78

benefit from an attribute that splits the data set into similarly large halves. It would,

instead, benefit from a split that leaves the available data larger. A standard decision tree,

on the other hand, would benefit from such a split because it would keep the tree balanced.

It would, therefore, be necessary to evaluate the exact formula within a standard decision

tree algorithm to get a final answer as to its usefulness.

ExactInfoGain vs. InfoGain

-15

-10

-5

0
adult spam sick-

euthyroid
kr-vs-kp gene-

function
crop

R
el

at
iv

e
A

cc
ur

ac
y

 Figure 5.5. Difference between standard and exact information in the
 rule-based algorithm in units of the standard error.

5.4.5. Performance

Standard decision tree algorithms, whether they are eager or lazy, are based on

database scans that scale linearly with the number of data points. The linear scaling is a

serious problem in data mining problems that deal with thousands or millions of data

points. A main benefit of using of P-trees lies in the fact that the AND operation that

replaces database scans benefits from compression at every level. As a consequence, we

 79

see a significantly sub-linear scaling. Figure 5.6 shows the execution time for rule-based

classification as a function of the number of data points for the adult data set.

0

20

40

60

80

0 10000 20000 30000

Number of Training Points

Ti
m

e
pe

r
Te

st
 S

am
pl

e
in

M

ill
is

ec
on

ds Measured Execution
Time

Linear Interpolation

 Figure 5.6. Scaling of execution time as a function of training set size.

5.5. Conclusions

We have introduced a lazy rule-based classifier that uses distance information

within continuous attributes consistently by considering neighborhoods with respect to the

unknown sample. Performance is achieved by using the P-tree data structure that allows

efficient evaluation of counts of training points with particular properties. Neighborhoods

are defined using the HOBbit distance that is particularly suitable to the bit-wise nature of

the P-tree representation. We derive information gain from a 2x2 contingency table and

analyze the approximation that has to be done in the process. We, furthermore, show that

accuracy of our classifier can be improved by constructing multiple rules. The attributes

with highest information gain are determined, and each rule is required to use one of them.

 80

This leads to accuracies that are comparable or better than results of C4.5. Finally, we

show that our algorithm has less than O(N) scaling with the number of training points.

5.6. References

[1] J. R. Quinlan, "C4.5: Programs for Machine Learning," Morgan Kaufmann Publishers,

San Mateo, CA, 1993.

[2] J. Friedman, R. Kohavi, and Y. Yun, "Lazy Decision Trees," 13th National Conf. on

Artificial Intelligence and the 8th Innovative Applications of Artificial Intelligence

Conference, 1996.

[3] Z. Zheng, G. Webb, and K. M. Ting, "Lazy Bayesian Rules: A Lazy Semi-naive

Bayesian Learning Technique Competitive to Boosting Decision Trees," 16th Int. Conf. on

Machine Learning, pp. 493-502, 1999.

[4] R. Duda, P. Hart, and D. Stork, "Pattern Classification," 2nd edition, John Wiley and

Sons, New York, 2001.

[5] D. Hand, H. Mannila, and P. Smyth, "Principles of Data Mining," The MIT Press,

Cambridge, MA, 2001.

[6] W. Perrizo, Q. Ding, A. Denton, K. Scott, Q. Ding, and M. Khan, "PINE-Podium

Incremental Neighbor Evaluator for Spatial Data Using P-trees," Symposium on Applied

Computing (SAC’03), Melbourne, FL, 2003.

[7] N. Cristianini and J. Shawe-Taylor, "An Introduction To Support Vector Machines And

Other Kernel-Based Learning Methods," Cambridge University Press, Cambridge,

England, 2000.

 81

[8] S. Cost and S. Salzberg, "A Weighted Nearest Neighbor Algorithm for Learning with

Symbolic Features," Machine Learning, Vol. 10, 57-78, 1993.

[9] A. Perera, A. Denton, P. Kotala, W. Jackheck, W. Valdivia Granda, and W. Perrizo,

"P-tree Classification of Yeast Gene Deletion Data," SIGKDD Explorations, Dec. 2002.

[10] R. Kohavi and G. John, "Wrappers for Feature Subset Selection," Artificial

Intelligence, Vol. 1-2, pp. 273-324, 1997.

[11] K. Bennett, M. Momma, and M. Embrechts, "A Boosting Algorithm for

Heterogeneous Kernel Models," SIGKDD ’02, Edmonton, Canada, 2002.

[12] M. Khan, Q. Ding, and W. Perrizo, "K-nearest Neighbor Classification of Spatial Data

Streams Using P-trees," Pacific Asian Conf. on Knowledge Discovery and Data Mining

(PAKDD-2002), Taipei, Taiwan, May 2002.

[13] Q. Ding, W. Perrizo, and Q. Ding, “On Mining Satellite and Other Remotely Sensed

Images,” Workshop on Data Mining and Knowledge Discovery (DMKD-2001), Santa

Barbara, CA, pp. 33-40, 2001.

[14] W. Perrizo, W. Jockheck, A. Perera, D. Ren, W. Wu, and Y. Zhang, "Multimedia Data

Mining Using P-trees," Multimedia Data Mining Workshop, Conf. for Knowledge

Discovery and Data Mining, Edmonton, Canada, Sept. 2002.

[15] C. Shannon, "A Mathematical Theory of Communication," Bell Systems Technical

Journal, Vol. 27, pp. 379-423 and 623-656, Jul. and Oct. 1948.

[16] W. Ledermann, "Handbook of Applicable Mathematics," Vol. 6, Wiley, Chichester,

England, 1980.

[17] L. Breiman, "Bagging Predictors," Machine Learning, Vol. 24, No. 2, pp. 123-140,

1996.

 82

[18] C.L. Blake and C.J. Merz, "(UCI) Repository of Machine Learning Databases," Irvine,

CA, 1998 http://www.ics.uci.edu/~mlearn/MLSummary.html, accessed Oct. 2002.

[19] Munich Information Center for Protein Sequences, "Comprehensive Yeast Genome

Database," http://mips.gsf.de/genre/proj/yeast/index.jsp, accessed Jul. 2002.

[20] W. Perrizo, "Satellite Image Data Repository," Fargo, ND

http://midas-10.cs.ndsu.nodak.edu/data/images/data_set_94/, accessed Dec. 2002.

