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CHAPTER 4 

LAZY KERNEL-DENSITY-BASED CLASSIFICATION  

USING P-TREES 

4.1. Introduction 

Kernel functions can be seen as the unifying concept behind many techniques in 

classification and clustering.  This chapter introduces kernel functions and describes a 

simple implementation based on the concept, which is related to a technique that is known 

in machine learning as Parzen Window classification [1] and extends previous work using 

P-trees [2].  Chapters 5 and 6 present two different, related algorithms that can be explained 

in the kernel-based framework.  Section 4.4 compares the results of the classification 

algorithms of Chapters 5 and 6 with the straightforward kernel-based algorithm of this 

chapter.   

In Chapter 5, a very simple kernel function, a step function, is used and combined 

with an entropy-based attribute selection scheme that is similar to decision tree induction.  

It is described in the decision tree/rule-based framework that is well established 

independently of kernel functions [3,4].  It does, however, differ from those other methods 

in its treatment of continuous data.  Comparable methods take the attitude that continuous 

data must be discretized before classification starts.  Our kernel-based derivation leads to a 

fundamentally different strategy, in which neighborhoods are determined on the fly.  This 

strategy can be followed efficiently using the HOBBit distance [5] which is designed to suit 

P-trees well. 

A second kernel-based algorithm is the subject of Chapter 6.  It assumes attribute 

independence improves the validity of this assumption by joining attributes, which makes it 
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a Semi-naive Bayesian classifier.  Other Semi-naive Bayes classifiers have been discussed 

in the literature [6,7] and show many similarities except for, again, the treatment of 

continuous data.  Our kernel-based derivation naturally includes continuous data and does 

not, therefore, require initial intervalization.  This derivation is in accordance with a view 

of Naive Bayes classifier in the framework of kernel methods [8], which is established in 

the statistics community but is not commonly used in data mining.   

Chapter 7 discusses kernel-based clustering and derives it as an approximation of a 

technique that is not commonly viewed in this context.  It differs from Chapters 5 and 6 in 

treating a kernel-based representation as a result rather than the starting point. 

 

4.2. Kernel Methods 

Kernel methods are commonly explained in the context of support vector machines,  

renormalization networks such as radial-basis functions, Kriging, and kernel-ridge 

regression [9].  All of these techniques have in common that a loss-function is minimized 

to result in a classifier that is optimal according to some definition [10].  This optimization 

step is not, however, the defining element of kernel methods.  Clustering techniques that 

are well-established in statistics use kernel functions to derive a density estimate [11].  The 

idea of these techniques is to estimate the data point density from a convolution with a 

kernel-function that is non-local in attribute space.  These techniques have recently been 

adopted by the data mining community [12], and Chapter 7 of this thesis can be seen as a 

P-tree based implementation of such an algorithm with some modifications.   

Kernel-based density estimates cannot only be used for clustering, but also for 

classification.  A class label value can be predicted from the kernel density estimate of each 
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of the potential class label values.  The class label value that corresponds to the highest 

density is chosen.  This procedure is very similar to k-nearest-neighbor classification       

(k-NN), in which the density of points is evaluated based on a window that contains 

precisely k neighbors, all of which are weighted equally.  Other windows that have a fixed 

size and may have distance-dependent weighting have been used.  The machine learning 

calls such windows Parzen Windows [1] while the statistics community refers to them as 

kernels [10]. 

In general, classification can be used to predict the value of a class label attribute 

with any discrete domain.  Prediction of a continuous attribute is commonly referred to as 

regression.  For the purpose of this thesis, we limit ourselves to binary classification in 

which the class label attribute can have one of two values, y = 1 and y = -1, that are 

represented as 1 and 0 in P-trees.  All classification problems can be mapped to binary 

classification problems [9].  The following function, fsimple_kernel(x), weights the class label 

values, yt, of the training points at xt by the value of the kernel function at point x and takes 

the difference between the predicted density of training points with y = 1 and those with     

y = -1. 
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fsimple_kernel(x) will be positive if a sample at position x is expected to be 1 and negative if it 

is expected to be -1.  One alternative of a kernel is a simple step-like shape in d dimensions 
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where li is the length of the box for the ith attribute, xs
(i) is the ith attribute value of the 

unknown sample, and xt
(i) the respective value of a training point.  θ(x) is the Heaviside 
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step function, which is 1 for x > 0 and 0 for x < 0.  Alternatively, a smooth function can be 

chosen such as a Gaussian function with width σi.  
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This kernel is a special type of a translation invariant kernel, K(x,z) = Kinv(x-z).  

Both k-NN and kernel classification rely on the definition of a distance metric.  This 

distance function can be the HOBbit distance, which is particularly suitable to an 

implementation that uses P-trees, see section 6.2.3. This form of a kernel approach is called 

Podium classification [2].  

 

4.2.1. Relationship with Support Vector Machines and Other Kernel 
Methods 

 

k-NN and Parzen Window/Podium classification do not have any mechanism to 

ensure that even the training points themselves are classified correctly.  A loss function can 

be defined to quantify the degree to which training samples are misclassified.  Note that 

minimization of a loss function requires additional degrees of freedom.  To that aim, 

training points are weighted by a constant, ct, that can be optimized 

∑
=

=
N

t
tt Kcf

1

),()( xxx   (4) 

The product, yt f(xt), is called the margin of the example with respect to f(x) [9].  For 

regression problems, the square error of the predicted value is traditionally chosen, but 

other alternatives were developed by Vapnik for support vector machines, in particular the 
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ε-insensitive loss function [8].  A common choice for the loss function in classification 

problems is the misclassification loss function 

))(()(,( tttt fyfyV xx −= θ , (5)  

where θ is the Heaviside step function.  The classification error is 
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In support vector machines, the error is minimized by an optimization of the objective 

function [8] 
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where 2|||| Kf  is the norm of the function, f, and λ is a Lagrange multiplier. The choice of λ 

determines sensitivity to noise.  If the training set were noise free, correct classification of 

training points would be the only goal.  In the presence of noise, overfitting can decrease 

prediction accuracy, and a simple solution, i.e., one with a small norm, may outperform a 

more complicated one even if the simpler solution misclassifies some training points.  

Other classification techniques, such as regularization networks, result in very similar 

optimization problems but differ algorithmically.   

A closely related technique is boosting [13,14].  If boosting is performed with 

Parzen Window classification as base classifier, the resulting algorithm is very similar to 

algorithms derived from a hill climbing approximation to support vector machine 

optimization (compare [14] to algorithm 7.1 in [9]).  Differences are limited to the precise 

updating strategies.  From a mathematical perspective, support vector machines are derived 

through a transformation into a high-dimensional space in which the problem is linear.   
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4.3. Classification Strategies 

Different P-tree-based classification algorithms can be derived from the 

observations in the introduction.  We will start by assuming that we use a Podium or kernel 

function to determine training points that are similar to a test point.  This approach 

immediately implies that different attributes are treated as if they had the same impact on 

the classification.  Such an assumption may be limiting if some attributes do not affect the 

class label attribute.  Note that support vector machines and other kernel techniques also 

consider attributes as equivalent unless the additional step of kernel optimization is used 

[15].  Attribute weighting can be introduced as part of the algorithm [16], or independently 

irrelevant attributes can be eliminated independently in a wrapper approach, such as feature 

sub-set selection [17]. 

For the purpose of this thesis, we assume that the kernel function itself is fixed.     

k-NN does not make this assumption but rather keeps the number of training points in the 

range of the window fixed.  A P-tree-based implementation of k-NN is also possible [5].  

The simplest similarity-based classification uses a window that has the shape of a step 

function; see equation (2).  The step-function approach faces the problem that the volume 

of interest is likely to be empty except if the small number of attributes that are used for 

classification is very small.  It can easily be seen why this problem should occur.  To get a 

rough estimate on the number of training points within the window, we can assume that 

each attribute independently splits the training set into two equally large subsets.  If a data 

set has 25 attributes, which is the median of attribute numbers used in Chapters 5 and 6, 

only the fraction 1/225 ~ 3*10-8 of the data set could be expected to be within the volume.  

Even for 106 training points, which is more than were available in any data set considered, 
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it would be unlikely to find even a single training point within the range of the window 

function.  This problem is also called the curse of dimensionality [8].  Three solutions to 

this problem were considered in this thesis.  One alternative is to use a Podium function 

that decreases gradually, such as a Gaussian function, as will be discussed in the remainder 

of this chapter.  The second alternative is to select attributes according to some measure of 

importance as will be done in Chapter 5. The third approach is to assume some degree of 

attribute independence, which allows using a factorization approach that is discussed in 

Chapter 6. 

 

4.3.1. Podium Classification 

In this thesis, we will focus on Podium functions that can be written as the product 

of one-dimensional Podium functions for each dimension.  Such a limitation is not 

necessary.  In fact, the original paper on Podium classification [2] did not make that 

assumption, but rather evaluated the distance between test point and training points by 

applying the MAX metric to the individual HOBbit distances of the attributes.  Note that 

the Gaussian function using the Euclidean distance between points is equal to the product 

of Gaussian functions of distances in each dimension.   
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where xs
(i) is the ith attribute of a sample point and xt

(i) the corresponding attribute of a 

training point.   

Section 5.2.2 motivates the use of the HOBbit distance, pointing out its benefits in 

the context of P-tree algorithms 
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where as and at are attribute values, and   denotes the floor function.  The HOBbit 

distance is, thereby, the number of bits by which two values have to be right-shifted to 

make them equal.  The numbers 32 (10000) and 37 (10101), for example, have HOBbit 

distance 3 because only the first 2 digits are equal and the numbers, consequently, have to 

be right-shifted by 3 bits.   

When moving to HOBbit distances, we have to make sure that we maintain the 

general behavior of the Gaussian function, which has been shown to work well as a kernel 

function in many contexts.  The average Euclidean distance over the interval of equal 

HOBbit distance should, therefore, be used in any Podium calculation.  In one dimension, 

the average Euclidean distance between two values, a0 and a1, that have HOBbit distance 

dHOBbit can be calculated as follows.  We know from the definition of the HOBbit distance 
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Note that we only have to evaluate the one-dimensional average since the multi-

dimensional kernel function is defined as the product of one-dimensional kernel functions.  
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It is useful to introduce an exponential HOBbit distance, dEH, that approximates a 

Euclidean distance and is defined as 
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Note that the values of dEH and dHOBbit are identical for distances 0 and 1.  We can, 

therefore, easily discuss categorical data in the same framework.  Data points for which 

training and sample values of a categorical attribute are equal (different) are considered to 

have the distance dEH(as,at) = dHOBbit(as,at) = 0  (dEH(as,at) = dHOBbit(as,at) = 1) for that 

attribute.  Treating categorical attributes in the same framework means that training points 

with differing categorical attribute values will contribute to the classification due to the fact 

that the Gaussian function is non-zero at finite distances.  This property is important 

because we would otherwise still suffer from the curse of dimensionality.  We can regain a 

kernel function that is 0 for differing categorical attribute values by taking the limit σ → 0 

for the Gaussian kernel.   

The exponential HOBbit distance can be used in place of the Euclidean distance for 

individual dimensions without changing the equality in (8) 
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It is sometimes preferable to use the Manhattan distance instead of the Euclidean 

distance, especially in high dimensions.  Since distance functions are not explicitly 

considered, using the Manhattan distance requires finding a function for which an 

equivalent equality holds; i.e., the product of its evaluation on individual dimensions 

should be equal to the function when evaluated for the total Manhattan distance.  The 
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exponential function has the desired property.  We can again use the exponential HOBbit 

distance instead of the Euclidean distance within individual dimensions 
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We generalize our approach slightly by allowing the width of the Gaussian 

function, σ, and exponential function, τ, respectively, to take different values for each 

dimension. This generalization can be seen as independent scaling of different dimensions. 

For a Gaussian window, it leads to a kernel function 
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For an exponential decay window, the kernel function is 
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The prediction is done using 
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with the predicted class label being 1 if fPodium(x) is positive and -1 one if it is negative. 

This approach successfully resolves the problem of possibly not having data points 

in the volume that is used to decide on the class label.  For weight functions that are non-

zero in the entire space, all training points would contribute to fPodium, albeit with varying 

prefactors.  In practice, the kernel function is commonly chosen to be 0 when it falls below 

some threshold to limit the computational effort.  Unfortunately, this choice does not fully 

resolve the problem of computational inefficiency.  When discussing the possible choice of 

a step function as a kernel function, we made an estimate on how space would be split up 
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for a typical scenario of 25 attributes and a kernel function that divides space in 2 sections.  

We can now reinterpret the result as stating that, in a setting with 25 binary attributes, the 

attribute space would consist of about 3*107 small volumes.  Many of those volumes will 

not require the computation of an AND because the Podium function falls below the 

threshold.  Many others will have no training points in them, resulting in a count of 0 that 

can commonly be evaluated much faster than a non-zero count due to the structure of P-

trees.  The resulting P-tree algorithm nevertheless shows inherently exponential scaling 

with the number of attributes, which requires some modifications for any data set that has 

more than very few attributes, typically 8-10.  Note that this problem does not occur when 

the MAX metric is used to combine HOBbit dimensions instead of the Manhattan or the 

Euclidean metric as is the case in [2].  For categorical data, the MAX metric leads to only 

two volumes, one with points for which all attributes match the unknown sample and one 

for which that is not the case.  The use of the MAX metric without an additional attribute 

selection scheme is, therefore, limited to continuous data. 

The complexity considerations require limiting the number of attributes to the most 

important ones.  Which attributes are considered most important depends on the test point.  

Information gain is used based on the weighted density of points. Note that the derivation 

of information gain described in the next chapter cannot strictly be applied to a setting with 

continuous attribute densities.  The exact formulation that is derived in Appendix B can, 

therefore, not be used.  The standard definition (See "Info" and "InfoGain" in Section 

5.2.4.) can, however, be applied successfully even in this general case. 
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4.4. Experimental Results 

 Sections 5.3 and 6.3 describe data sets and experimental setup in some detail.  At 

this point, it is interesting to see how the Podium method described earlier and the two 

other techniques compare.  Figure 4.1 compares the accuracy of all three algorithms.  For 

the Podium implementation, eight attributes with the highest information gain were 

selected.  The width of the Gaussian fuQFWLRQ�� ��ZDV�FKRVHQ�WR�EH�RQH-half of the standard 

GHYLDWLRQ� RI� HDFK� DWWULEXWH� IRU� FRQWLQXRXV� DWWULEXWHV�� � )RU� FDWHJRULFDO� DWWULEXWHV�� � ZDV�
chosen to be 1.  The results are compared with the rule-based results for 20 paths (Section 

5.3.3.) and the Semi-naive Bayes classifier of Section 6.3.4.  It can be seen that, for most 

data sets, the rule-based algorithm performs best.  The straightforward Podium 

implementation is most competitive on data sets with few attributes, such as the crop data 

set with only three attributes.   
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Figure 4.1. Error rate comparison among the algorithms of Chapters 4-6. 
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The following three chapters represent papers that have been published or are 

intended for publication.  The paper-style organization made a certain amount of 

redundancy unavoidable and also motivated a choice of notation that seemed clearest in the 

given context.  To assist in the transition between chapters, some remarks have been 

collected in the following section. 

 

4.5. Remarks to Simplify the Transition Between Chapters 4, 5, and 6 

 The following sections are redundant or subsets of each other 

• Sections 5.3.1 and 6.3.2 on P-trees are identical. 

• Section 6.3.3 repeats material that has been covered in Sections 4.5 and 5.3.2. 

• Section 5.4.1 on data sets is a subset of Section 6.4.1.  Section 6.4.1 describes two 

additional data sets, the splice and the waveform data set, which have a class label 

domain of size three. 

 

4.5.1. Kernel Formulation for Chapter 5 

The kernel function notation of Chapters 4 and 6 could be used in Chapter 5 as well.  

The kernel function that is used for n attributes that have been considered relevant by 

information gain comparison and information gain cutoff is 
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where [π] is 1 if predicate π holds and 0 otherwise.   
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4.5.2. Class Label Domain 

Whereas Chapters 4 and 5 assume binary class labels, this assumption is not made 

for Chapter 6, where class labels with larger domains are also used.  Based on equation (2) 

of Chapter 6, 
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equation (1) in this chapter would be written as 
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4.5.3. Treatment of Categorical Data 

Chapter 4 assumed that categorical data use the same Gaussian kernel function as 

continuous data, with differing categorical attributes having distance 1 and identical ones 

having distance 0.  This choice leads to a non-zero contribution to the kernel function for 

differing categorical attributes, which is desirable in the light of the curse of 

dimensionality.  In Chapter 6, we do not have to use this computationally intensive choice 

but can use a simple kernel function that is 0 for differing attributes because only a few 

attributes are combined.  The corresponding kernel function for categorical data can be 

seen the limiting FDVH�RI� �→ 0 in (13).  
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