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CHAPTER 3 

P-TREES: CONCEPTS, IMPLEMENTATION,  

AND APPLICATION PROGRAMMING INTERFACE 

3.1. Concepts 

Most storage systems view data as a collection of tables.  These tables can be stored 

row by row as is done in the common record-based storage formats.  Chapter 2 motivated a 

column-wise storage format in which tables are broken up into columns and columns are 

further broken up into individual bit positions.  Each bit position can be considered a bit 

vector.  The bit vectors can be seen as indexes to records that have the corresponding bit 

set.  Identifying records that correspond to a particular attribute value or collection of 

attribute values, in this setting, requires a bit-wise AND operation on all the bit vectors 

involved.  The bit vectors are likely to contain long sequences of 0 or 1 values.  We, 

therefore, use a compressed format, the P-tree format.  P-trees were initially designed for 

spatial data that show homogeneity due to the spatial continuity of the data [1].  

Multimedia data also show homogeneity in the time dimension [2].  Homogeneities in data 

can occur for other reasons.  Join operations in databases lead to replication of some table 

entries.  Depending on the join algorithm, some these replicated entries appear in sequence 

and can be compressed in a bit-column-wise storage.  Sparseness of 1 values furthermore 

leads to long sequences of 0 values [3].  For data that do not show any homogeneity, a 

sorting scheme that improves compression of P-trees significantly is introduced.  We look 

at the creation of P-trees as a two-step process in which we first choose an appropriate 

ordering of records, as explained in Section 3.1.1, and then break up columns into bit 

vectors and compress them by eliminating pure quadrants; see Section 3.1.2. 
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3.1.1. Choosing an Ordering 

P-trees gain their compression potential from bit-subsequences that are entirely 

composed of 0 or 1 bits.  In image data, spatially close pixels are likely to be similar in 

other properties because they often belong to the same object or natural environment.  It is 

important to maintain the property of spatial closeness when mapping the two-dimensional 

structure space to the one-dimensional P-tree representation.  Many space-filling curves 

have been suggested with the goal of maintaining continuity when mapping n dimensions 

to one; see Figure 3.1.   

 

 

Figure 3.1.  Space-filling curves. 

 

While Hilbert ordering is slightly better at keeping close regions close, Peano- or  

Z-ordering, which is also called recursive raster ordering, has significant algorithmic 

advantages.  In Peano-ordering, the n coordinates of the n-dimensional space are 

transformed into one 1-dimensional coordinate by a simple process of interleaving bits.  
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Figure 3.2 demonstrates the process in two dimensions.  The point at x = 2 and y = 1 will 

be at position s = 6 in the Peano-ordered sequence. 

 

 

 Figure 3.2.  Construction of a Peano-ordered sequence through  
 interleaving of bits. 
 

In general, for d attributes, with b bits each, a particular structural position, p, will 

have index s in the sequence, where s is given by the following definition: 
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where bit number 0 is the highest-order bit for all position attributes and  )( j
ip is bit number 

i of the jth structural attribute. 

It is interesting to examine this transformation from a different viewpoint.  The 

highest-order bits in the original coordinates give the coarsest grouping of data points.  In 

Chapter 2, we referred to them as the highest level in a concept hierarchy.  
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Correspondingly, they are the most relevant ones in grouping data points according to their 

location.  Therefore, we first use the highest-order bit in each dimension to determine the 

place in the Peano sequence.  Once we have used all highest-order bits, we continue by 

progressing down the concept hierarchy. 

For image data, the spatial coordinates themselves do not have to be stored because 

each pixel is represented.  Starting coordinates, resolution, and the definition of the pixel 

order, therefore, uniquely define the position for each pixel in the image.  Spatial 

coordinates are neither stored in our P-tree representation nor in common image formats.  

Other data do not necessarily have such structural dimensions.  Many data sets that are 

used in machine learning and data mining have key attributes that do not fully explore their 

domain, or use arbitrary identification numbers as keys that have no relationship with the 

remaining data.  If the key attributes do not fully explore their domain, a representation in 

the domain space of the key attributes can still be used but may incur a high storage cost.  

Attribute combinations that are not represented in the data set would now have to be 

included, and an additional mask would have to be constructed to identify meaningful 

points.  When using P-trees, we do not commonly take this route.  Instead, we represent all 

attributes as P-trees and construct any necessary indexes on the fly by an AND operation.   

 

3.1.2. Generalized Peano-order Sorting 

Whereas spatial data are given in a form that is sorted according to their spatial 

coordinates, other data commonly are not sorted at all or sorted according to an irrelevant 

identification number.  It may then be advisable to choose an ordering that benefits 

compression; i.e., an ordering that has long sequences of 0 values and 1 values.  If we sort 
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according to a particular bit, b0, this bit will have no more than one contiguous sequence of 

0’s and one of 1’s, which will lead to very good compression for this bit.  If we sort 

according to the combination of two bits, b0 b1, i.e., consider them a two-bit integer with 

higher order bit b0, the compression of b0 will be as before, and b1 will consist of up to four 

contiguous sequences of 0 and 1 values.  It is straightforward to use all bits of all attributes 

for sorting.  We try to optimize compression by pursuing a second goal.  If two bits of two 

attributes, bi and bj, are highly correlated, sorting according to bi will also benefit the 

compression of bj; i.e., we would like to choose those bits that are correlated most strongly 

with others as highest-order bits for the purpose of sorting.  One solution to this goal is 

closely related to the Peano ordering concept.  For Peano order, the highest-order bits of all 

attributes determine the ordering before lower level bits are considered.  In generalized 

Peano-order sorting, we do the same when sorting according to feature attributes.  The 

numbers that determine the sequence are constructed from the bits of all attributes in the 

following way:  We start with all highest-order bits of numerical attributes as well as bits 

that correspond to Boolean attributes.  The order between these highest-order bits is chosen 

randomly or from domain knowledge.  For binary classification tasks, it is usually 

beneficial to use the class label as the highest-order bit because the class label attribute is 

involved in many AND operations.  Next in sequence are the second highest bits of 

numerical attributes.  They are grouped together with categorical attributes that require two 

bits for their representation, i.e., have a domain of 3 or 4 values.  We encode categorical 

data by randomly assigning labels.  Appropriate choice of distance measures ensures that 

differing labels are always considered to have distance 1 irrespective of the integer value 

they could be seen to represent.  Equal values are considered to have distance 0.  Chapter 2 
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discussed the procedure from a distance metric perspective.  The example in Table 3.1 

shows the bit order for two integer-valued and two categorical attributes.  For integer-value 

attributes, bit 0 is the highest-order bit, and for categorical attributes, it may be arbitrarily 

chosen.  Another example that highlights the Peano-order aspects of this sorting strategy 

can be found in Section 5.2.1.  Note that the bits of categorical attributes can all be grouped 

together because they are at the same level in the concept hierarchy.  Different bits of 

categorical attributes are treated as equivalent everywhere in the data mining code.  In 

general, the nth step groups the nth bit of numerical attributes together with all n bits of a 

categorical attribute with a domain of [2n-1,2n) values.  This strategy is chosen because 

categorical attributes that are represented by n bits can cover as many values as numerical 

attributes of which only the n highest-order bits are considered.  If an attribute with many 

values is used for sorting, sequences naturally become fragmented.  Therefore, attributes 

with small domain should be used first, together with the higher order bits of numerical 

attributes.  In this interpretation, the n highest-order bits of a numerical attribute can be 

seen as defining a numerical attribute with a correspondingly limited domain. 

Table 3.2 shows an example of a data file for the attribute bits in Table 3.1.  Note 

how c0 show high compression despite the fact that it is not used for sorting.  The reason is 

that the data show a correlation between the highest-order bit in age and gray hair color.  

The data also show a correlation between the highest-order bit in height and sex, which 

allows compression for bit s0.   

 

 

 



 25

Table 3.1. Bit order in generalized Peano-order sorting. 

Attribute name Attribute type Represented 

bit positions 

Domain description 

Age 7-bit integer a0 ... a6  

Height in feet 3-bit integer h0 ... h2  

Sex 1-bit categorical s0 Domain label 

male 0 

female 1 
 

Hair color 3-bit categorical c0 ... c2 Domain label 

red 000 

blond 001 

brown 010 

black 011 

gray 100 
 

Bit order used for sorting: 

bit position  0 1 2 3 4 5 6 

attribute bits a0 h0 s0 a1 h1  a2 h2 c0 c1 c2 a3 a4 a5 a6 
 
 

The decision about whether it is efficient to include the extra sorting step depends 

on the expected use of the data.  Figure 3.3 shows the number of nodes in a P-tree that are 

required without sorting, using simples sorting, and with generalized Peano sorting.  The 

number of P-tree nodes is proportional to the storage requirements.   
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Table 3.2.  Example of a data set that was sorted using the bit-order in Table 3.1. 

a0 h0 s0 a1 h1 a2 h2 c0 c1 c2 a3 a4 a5 a6 

0 0 1 0 1 1 1 0 1 1 1 1 1 0 

0 0 1 1 0 0 1 0 0 1 0 1 0 0 

0 1 0 0 1 1 0 0 1 0 1 1 1 0 

0 1 0 1 1 1 1 0 0 0 1 0 1 1 

1 0 0 0 1 0 0 1 0 0 1 0 0 0 

1 1 0 1 0 0 0 1 0 0 0 1 1 1 
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Figure 3.3.  Number of P-tree nodes for different sorting schemes (data  
sets as explained in Chapter 4, with the crop data set restricted to 3 105  
data points). 
 

Good compression is not only beneficial to storage requirements.  The speed of 

algorithms strongly depends on the number of P-tree nodes that are involved in the 

calculations.  Efficient P-tree implementations do not require examining branches of any P-

tree involved in an AND operation if at least one tree is known to be composed entirely of 
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0 bits, as will be explained in the next section.  Figure 3.4 shows that the execution speed is 

significantly more affected by sorting, in particular generalized Peano sorting, than the 

storage requirements depicted in Figure 3.3 would have suggested.  Times are based on the 

classification of 100 data points using rule-based P-tree classification as explained in 

Chapter 4. 

 

Impact of Sorting on Execution Speed
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Figure 3.4.  Time for the classification of 100 data points using rule-based  
classification as explained in Chapter 4. 
 

3.1.3. Compression 

Once an ordering has been established, the table is broken up into attributes, and 

attributes into bit-sequences, that are referred to as P-sequences.  If optimal compression 

was desired, we could use run-length compression for the individual bit-sequences.  The 

problem with such a scheme is that we routinely have to perform Boolean operations on the 

P-trees in response to queries and as part of data mining operations.  We, therefore, choose 

a format that allows efficient execution of Boolean operations among P-trees while the data 
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are compressed.  To achieve this goal, it is beneficial if compression boundaries match 

among different bit-sequences.  A tree structure is chosen that allows the hierarchical 

definition of boundaries.  We will first describe the logical structure of a P-tree and then 

proceed to look at implementation choices that make P-tree operations more efficient.   

Logically, a P-tree can be seen as a tree in which each level-0 node (lowest level) 

represents one bit of the data.  Each level-1 node in the tree has f level-0 nodes as children, 

where f is the fan-out of the tree.  The fan-out is chosen to be a power of 2, or a power of 2d 

for d-dimensional data.  For the purpose of this thesis, the fan-out is chosen to be constant 

for the entire tree.  In principle, a different fan-out could be chosen for different levels.  If 

all f children of the node are 0, the node is called "pure 0"; if all are 1, the node is called 

"pure 1"; in all other cases, the node is called "mixed."  This statement is generalized at 

higher levels in the tree.  If all f children of the node are "pure 0," the node is called "pure 

0"; if all are "pure 1," the node is called "pure 1"; in all other cases, the node is called 

"mixed."  A level-0 node that represents the bit 0 (1) can, therefore, be seen as a special 

case of a "pure 0" ("pure 1") node.  Note that level-0 nodes cannot be "mixed."  Children of 

"pure 0" ("pure 1") nodes do not have to be stored since they are guaranteed to be "pure 0" 

("pure 1") at any level.  P-trees achieve compression through nodes that do not have to be 

stored.  Figure 3.5 shows the structure of a P-tree. 

A node can be have three states, "mixed," "pure 0," and "pure 1," that can be 

represented using two Boolean variables. If the tree structure can be inferred from separate 

information, such as node addresses or the existence of child pointers, one bit is sufficient.  

The existence of child node information then automatically identifies a node as "mixed."  



 29

For computational reasons, it may nevertheless be useful to represent two bits at each node.  

In the following section, we will look at different implementation options. 

 

 

Figure 3.5.  Structure of a P-tree. 

 

3.2. Implementation 

The logical definition of a P-tree does not uniquely specify its representation within 

a computer program.  The tree structure itself can be maintained through pointers, node 

addresses, or as a sequence.  Some implementations will, furthermore, represent child or 

even grandchild information within each node to improve efficiency.  Four main types of 

implementations have been used in the past: quadrant-ID-based; tree-based; sequence-

based; and array-converted, tree-based implementations.  We will limit our discussion to 

those representations that can be seen as precursors to the array-converted, tree-

implementation that has been implemented and used for this thesis.  Before discussing 

differences among implementations, we will review some commonalities.   
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3.2.1. AND Operation 

We frequently have to perform AND operations on P-trees.  Appendix A gives a 

formal definition of an AND operation.  The basic strategy of most implementations of the 

AND consists of determining those nodes that are guaranteed to be "pure 1" (nodes that are 

"pure 1" for all trees that are being ANDed) and nodes that are guaranteed to be "pure 0" 

(nodes that are "pure 0" for at least one tree that is being ANDed).  The remaining nodes 

can be either "pure 0" or "mixed," and sub-trees have to be examined.  Two main criteria 

for fast ANDing can be extracted from this description.  Taking the AND of "pure 1" 

information and the "OR" of "pure 0" information must be fast.  To this end, we make use 

of the parallelism of bit vector representations.  We also have to be able to find children 

quickly.  This goal can be achieved through pointers (See Section 3.2.3.) or storage of array 

indices (See Section 3.2.5.).  Storing the pre-order sequence of a tree allows fast retrieval 

of the first child.  Retrieving later children requires parsing all previous ones, which 

decreases performance when one or more children can be eliminated entirely because they 

are being ANDed with a pure 0 node. 

 

3.2.2. Bit Vector Operations 

Many implementations, to some extent, use the concept of bit vectors.  To do so, 

the purity information of the children of a given node is collected into one or more bit 

vectors, called a child-purity vector.  Internally, bit vectors are represented through integer 

types or arrays thereof.  The size of each child-purity vector is given by the fan-out of the 

tree, i.e. the maximum number of children per node.  A key factor in optimizing P-tree 

operations lies in the efficient use of the inherent parallelism that comes with the use of bit 
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vectors.  Bit-wise Boolean operations on integers can be done in one machine cycle and 

correspond to the parallel execution of 32 or 64 Boolean operations depending on system 

architecture.  Bit vectors also allow an efficient implementation of bit counting.  Most data 

mining algorithms rely on determining the number of data points that satisfy a particular 

condition which, in the context of P-trees, is the number of 1 bits that result from Boolean 

operations on P-trees.  One possible counting algorithm would evaluate the number of 

occurrences of 1 in an integer by shifting the number one bit at a time.  A faster 

implementation takes several bits and determines the number of 1 bits through table look-

up.  Bit sequence 0110, for example, has two bits set to 1.  In a look-up table, we would 

store the value 2 as the number of bits for index 6, the number that 0110 represents.  The 

same strategy can be used to determine the position of the first 1 bit in a bit vector.  This 

strategy for counting and finding the first 1 bit works well for 8 bits with 256 entries in a 

look-up table.  It is not efficient beyond 8 bits because the look-up table would become too 

large. 

A general consideration is how to choose the size of bit vectors.  In most 

representations, that size is equal to the maximum number of children, or the fan-out of the 

tree.  For a structural dimension of 2, it is natural to choose a fan-out of 4.  Each node in 

the tree then has four children, each of which represents a quarter, or quadrant, of the 

parent node range.  Choosing a larger fan-out increases parallelism and can significantly 

improve the ANDing speed of P-trees.  The current implementation was optimized for 32-

bit registers.  Thirty-two-bit vectors naturally represent a P-tree in 5 structural dimensions 

and cannot well be justified for 2-dimensional spatial data.  We, therefore, used a fan-out of 

16 that corresponds to collapsing two levels into one for spatial data. 
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3.2.3. Tree-based Implementations 

In tree-based implementations, the tree structure is maintained through pointers.  

These pointers can either be provided by the programming language or can be logical 

pointers, such as array indices.  Using language-provided pointers leads to problems, 

referred to as pointer swizzling, if sub-trees are to be distributed over a network.  A further 

disadvantage of standard pointers is that storage requirements for each pointer cannot be 

adapted to the actual address space that the P-tree requires.  Using logical pointers such 

array indices allows matching the data type to the address space requirements based on the 

actual P-tree-size and thereby reducing storage.  Using array indices has the further benefit 

that arrays are commonly stored contiguously in memory.  Iterating through an array is, 

therefore, likely to be faster than following pointers to unrelated positions in memory. 

A common criticism of tree-based implementations is that the storage requirements 

of pointers could easily exceed the storage of nodes.  It is correct that a naive 

implementation could show this behavior.  Figure 3.6 gives a graphical view of different 

tree-based representations, each one giving the "pure 1" information.  Note that, 

theoretically, no "mixed" bit has to be stored because the existence of a child-pointer is 

equivalent to "mixed" information.  In practice, most tree-based implementations will still 

maintain the full child purity information to allow efficient bit-vector-based computations 

as well as allowing compressed storage of child-pointers.   

It can be seen that the number of pointers is equal to one less than the total number 

of nodes.  Intuitively, it may seem as if the number of pointers had to scale as the number 

of nodes multiplied by the fan-out.  The scaling is, however, better since no pointers have 

to be maintained at the lowest level.  A naive implementation in which nodes represent 
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their own purity information is nevertheless very inefficient.  If the address space is 

assumed to be 1 million nodes, corresponding to 20 bits, pointers require 20 times the 

storage required by nodes.  A representation that maintains the child purity at each node 

will improve the ratio, especially for a large fan-out.  If we assume the fan-out to be 16, the 

storage space for pointers will be comparable to that of the data.  We can repeat the process 

of representing child information within the parent, leading to a representation of 

grandchild purity within each node.  A child purity representation has storage requirements 

for pointers of approximately 1/fe that of the node representation, where fe is the effective 

fan-out, i.e., the number of children that have to be stored.   We will discuss this 

improvement for the sequence-tree-hybrid implementation.  Appendix A systematically 

carries through the corresponding transformations. 

 

 

   

Figure 3.6.  Representations of P-tree structure (pure 1 information displayed). 
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3.2.4. Sequence-based Implementations 

Sequence-based implementations rely on the storage sequence for reconstruction of 

the original data.  Sequence-based representations can be constructed for any of the three 

tree variants discussed previously: nodes that contain their own purity, child purity, or 

grandchild purity.  The storage sequence alone can only be loss-less if purity information is 

allowed to cover the three values of "pure 1," "pure 0," and "mixed."   Note that, for tree-

based implementations, "pure 1" (or "pure 0") information alone is sufficient to distinguish 

"pure 0" from "pure 1" nodes, with mixed nodes being identified by the existence of a 

child.  The values in three-value logic are mapped to the computer-supported binary logic 

by representing two of the three possible states, such as "pure 1" and "mixed."  The third 

value ("pure 0") can be inferred from the other two as "pure 0" = ¬ ("pure 1" ∨ "mixed").  

An alternative way of describing this implementation is to say that the "mixed" information 

represents the tree-structure in a way that is equivalent to, albeit different from, pointers or 

node addresses, called quadrant IDs, in other representations. 

The storage sequence can be defined according to any of the common tree-walk 

strategies, such as depth-first or breadth-first, where a depth-first tree-walk allows further 

choices regarding the positioning of node values with respect to each child tree-walk (pre-

order or post-order sequence).  In a pre-order sequence, the value of a node is stored before 

sequences that are defined by the child nodes.  In the next section, ideas from pointer- and 

sequence-based representations will be combined for maximum storage and ANDing speed 

efficiency. 
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3.2.5. Array-converted Tree-based Representation 

The benefits of tree-based representations, namely the fast access to all child nodes, 

can be achieved without the main drawbacks of pointers.  If node information is stored in 

array form, array indices can easily serve the purpose of pointers.  The conversion is 

especially easy and efficient for the grandchild purity representation discussed in Section 

3.2.3.  Grandchild purity information can be grouped by child node.  For each mixed child, 

an address has to be stored as well as the child’s child-purity vectors; i.e., exactly one array 

index has to be stored for each bit vector pair of child-purity information, allowing for a 

straightforward array-based storage organization.  Figure 3.7 shows an example of an 

array-converted, tree-based representation as it was used in the code that was written for 

this thesis.   

"Pure 1" information together with "mixed" information are used to perform the bit 

vector operations necessary in P-tree ANDing.  The address sequence, a, maintains the 

array indices that act as pointers to child-nodes.  Each node contains the full grandchild 

purity information, i.e., a bit vector (child-purity vector) for every mixed child.  The 

example in Figure 3.7 depicts the "pure 1" information above the "mixed" information for 

each node.  The lowest-level node requires neither mixed information (Level-0 nodes are 

pure by definition.) nor addresses (Level-0 nodes have no children.)  The count of bits is 

furthermore maintained to increase ANDing speed.  The key benefit of this representation 

with respect to simple sequence-based representations lies in the fact that the branch on the 

right side of Figure 3.7 can be located without iterating through the branch on the left side.  

Without this property, ANDing speed would not gain serious benefit from compression, 
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and the improvements in execution speed that were depicted in Figure 4 would not be 

possible. 

 

 

Figure 3.7. Large example that represents the implementation for this thesis. 

 

3.3. Application Programming Interface (API) 

Many people use and contribute to P-tree-based data mining code.  It is, therefore, 

important to make collaboration as easy as possible.  Providing a well-defined application 

programming interface, API, is central to enabling collaborative programming.  The design 

of the API was guided by the wish to allow a flexible combination of different P-tree 

implementations with a variety of data mining algorithms on a wide choice of data sets.  

We, therefore, structured the API into a data mining interface, DMI, that defines how P-

tree code is called from data mining applications and a data capturing interface, DCI, that 

specifies the format in which data are read into a P-tree.  Figure 3.8 shows the relationships 

between the most important classes of the API, using universal modeling language, UML, 

notation.  The classes will now be explained.  Please refer to [4] for a complete UML class 

diagram. 
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Figure 3.8.  Relationships among the most important classes in the P-tree API. 

 

At the time of designing the interface, several P-tree implementations were already 

in existence.  We, therefore, had to be sure that each one of them would fit into our model.  

One way of ensuring compliance with existing code was to use two significantly different 

implementations, one of which is presented in this thesis, as benchmarks for the feasibility 

of any suggestion.  A result of this strategy was that we decided to combine P-tree creation 

and ANDing into one class, PTreeSet, that holds those basic P-trees that are to be used in 

AND operations.  PTreeSet may hold complement P-trees as well as basic P-trees if the 

implementation requires it.  Alternatively, the implementation may opt to construct 

complements on the fly.  For this and other reasons, it would be limiting to define a class 

PTree and insist on how P-trees are to be combined into PTreeSets.  Two types of 

parameters are used to define the logical structure of a P-tree: the fan-out and the number 

of levels.  We combined these parameters into a class, PTreeFormat.  Some 
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implementations may allow different fan-out at different levels, whereas others will use 

one fan-out for the entire tree.  These distinctions were handled by creating sub-classes to 

PTreeFormat.   

 

3.3.1. Data Mining Interface (DMI) 

The main operation of the DMI consists of requesting a count as a result of an AND 

operation on a particular combination of P-trees (andCnt(PTreeSpec)).  The central 

construct that allows defining the combination of the P-trees that are to be ANDed is the  

P-tree specification, PTreeSpec.  The P-tree specification consists of a bit-pattern, 

“pattern,” that is 1 if a basic P-tree is to be included in the AND and 0 for a complement   

P-tree.  A second bit vector, “mask,” specifies those P-trees that are to be included in the 

AND.  In principle, it is possible to set the bits in both of those bit vectors individually.  In 

practice, especially for a large number of P-trees, it is not advisable to do so.   

Much of the work on the DMI was guided by the need that arises from the 

complexity of dealing with several hundred P-trees that belong to dozens of different 

attributes, representing many different data types.  A main decision that was taken was to 

allow access to P-trees based on attributes, or bands, as well as relative indexes within 

those attributes.  Bands can be identified by their name.  In practice, access by a sequential 

number was determined to be at least as important.  P-trees that belong to one band can be 

distinguished by an index within the band.  At a still higher level, one may wish to use 

methods that increase or decrease intervals in a type-independent fashion rather than 

explicitly dealing with indexes within a band.  Such methods were included into sub-

classes of PTreeSpec that were used for the programs described in this thesis.  The high-
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level methods were intentionally not included into the DMI with the intent of maintaining 

simplicity for programmers who may not need such generality.  The possible need to 

identify band types did, however, motivate a set of classes that preserves meta-data 

information from the data file.  In an initial design of the API, we underestimated the need 

of making meta-data information available to data mining code.  The programs written for 

this thesis demonstrated the need to improve the design and formally allow the transfer of 

meta-data information from a data file to data mining code through a class, BandInfo. 

The BandInfo class maintains information regarding the type of band, such as 

whether it can have unknown values as well as type-related information.  A band with 

unknown values requires an additional P-tree that identifies those data points for which the 

particular band information has been provided.  BandInfo also maintains the position of the 

particular band within the PTreeSet.  Each BandInfo object may, therefore, only be part of 

one PTreeInfo object that goes with one PTreeSet.  Different types of bands, such as 

integer, bit vector, and categorical bands, differ in the way they represent distances and 

intervals.  Categorical attributes only allow two distances, distance 0 if values are identical 

and distance 1 if they differ, with no other distances defined.  A single-valued categorical 

attribute may be represented by a label, such as red = 0, green = 1, blue = 2, provided 

distances are guaranteed to be evaluated correctly.  Label-encoded categorical attributes are 

represented by class CatBandInfo.  Multi-valued categorical attributes are commonly 

represented by bit vectors where each domain value is represented by one bit.  Distance 1 

now corresponds to one matching bit with multiple bits combined through OR.  Requiring 

all bits to match (AND), as in the case of label-encoded integers, would correspond to 

requiring each of the multiple values to match, which clearly does not represent the 
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common understanding of matching values.  Multi-valued categorical attributes are not yet 

integrated into the API. 

The BandInfo sub-classes, such as IntBandInfo and CatBandInfo, offer specialized 

implementations of methods such as getDataMeaning(bit_vector) and 

getRepresentation(string) which allow translating back and forth between the conventional 

representation of the data and the bit vector representation used within the P-tree code.  

BandInfo objects are collected into a central PTreeInfo class that maintains all information 

related to a particular PTreeSet.  Each PTreeSet holds a PTreeInfo object that is updated 

whenever a band is added to the PTreeSet.   

 

3.3.2. Data Capture Interface (DCI) 

The data capture interface was designed to make file reading independent of the    

P-tree implementation.  Independence is achieved by supplying a PTreeFeeder class for 

each file-format that is to be read.  The PTreeFeeder class offers a method getPoint that 

returns the data for one data point as an object of type DataPoint.  Each object of type 

DataPoint consists of a key (retrievable by method getLocation()) as well as a bit vector 

that contains the bit values for all basic P-trees (retrievable by getData()).  It is important to 

note that information is passed one data point at a time; i.e., no separate data structure has 

to be held in memory to supply the data that are used to construct P-trees.  Most 

PTreeFeeder classes are implemented to read data from a stream, such as a file, when the 

getPoint() method is called.  Note that PTreeFeeders do not have to be implemented this 

way.  Data can also be the result of a database query or may be read into an array first and 
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read from the array for each call of getPoint().  The latter options are important if data are 

to be sorted according to one or many of the feature attributes.   

The DataPoint and PTreeFeeder classes need to know nothing about P-tree format 

other than that it is a bit-wise representation.  Since a DataPoint provides only one bit for 

any one P-tree, it is unaffected by the actual P-tree storage or compression, or by Peano 

ordering.  Peano ordering can be seen as separate from both the file reading and the P-tree 

implementation.  The conversion from location information into quadrant identifier 

information (qid) was, therefore, moved into a separate class QIDConverter.  An important 

goal of both the DCI and the DMI was to keep those classes that have multiple 

implementations as small as possible, e.g., the PTreeFeeder that requires a separate 

implementation for every file format.  The PTreeSet class also has many implementations 

that are beneficial for different types of data.  Any responsibility that can be transferred to 

supporting classes reduces the effort of implementing any of the classes of which multiple 

variants are necessary or desired. 

The PTreeFeeder class does have to construct the BandInfo objects that hold meta-

data and offer methods for use by data mining algorithms.  Meta-data can come from the 

data file itself or may be even be determined by the fact that a particular file format is used.  

Tiff color images, for example, will always contain integer-valued information, and bands 

will be required; i.e., there will be no pixels that have information on red and green 

intensities but no value for blue.  For more general data formats such as data from the 

University of California at Irvine, UCI, machine learning repository, meta-data have to be 

read from a separate file.   
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Additional supporting classes can be and have been implemented, e.g., to clean data 

that come from particular data files or to assist in common data mining tasks such as the 

calculation of averages, use of HOBbit-based Gaussian weight functions, etc. Most of these 

supporting classes are not considered part of the API but may be included if many people 

use them.   

 

3.4. P-tree API as an Example of a Column-based Design 

We will now look at the P-tree API in the light of column-based data organization 

as was discussed in Section 2.6.  The entity that represents the main data mining table, 

PTreeSet, is considered as one class, as is the case normally when records are treated as an 

object.  Bit-columns are represented in P-tree format using a special class, PTree, to handle 

the compression and hierarchical organization.  Class PTree is not part of the API since its 

interface is implementation dependent.  The implementation that was done for this thesis 

does, however, have a distinct class PTree, as do most other implementations.   

A generic implementation of operations among P-trees is not easy due to their 

hierarchical structure and was not attempted in the context of this thesis, although plans for 

such an implementation are currently being developed.  The main operation on P-trees is 

the AND operation that determines (the number of) those rows that match a sample in a 

specified sub-set of its attribute bits.  This operation requires the ability of specifying a 

row, which is done using class PTreeSpec.  The interesting aspect of this class is that it 

represents a complete row that has to match all attribute definitions of the data mining 

table, PTreeSet.  Operations on the row specification class, PTreeSpec, rely on some 

knowledge of the attributes in the data mining table, PTreeSet.  We, therefore, need a class 
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to maintain header information, PTreeInfo.  Since the header information has to match the 

attributes in PTreeSet, a PTreeInfo object is contained within the class that represents the 

PTreeSet object.  A new copy has to be retrieved whenever a row specification (object of 

class PTreeSpec) is constructed.  Header information is, furthermore, broken up into 

attribute headers, BandInfo.  Attribute header objects represent type information as well as 

maintaining methods that can be used in the manipulation of row specification, PTreeSpec, 

objects.  PTreeSpec does not maintain methods that are to be used by the data mining table, 

PTreeSet, itself; otherwise, the performance issues of using method calls on a large number 

of rows would recur.   

Our design, therefore, requires a minimum of five classes, PTreeSet, PTree, 

PTreeSpec, PTreeInfo, and BandInfo, to represent a single column-based table, with 

additional classes used to handle compression specific issues such as PTreeFormat and 

QIDConverter that were discussed in the previous sections.  A row-based implementation 

would require no more than two classes, one that represents a row and a container class to 

allow access to all rows.  This difference shows that an object-oriented implementation of a 

column-based data structure does indeed use more classes than a row-based 

implementation.  It should not, however, discourage the use of an object-oriented 

implementation since it was performance that guided our design.  The benefit of using an 

object-oriented design can be seen from previous sections that demonstrated how the table 

implementation becomes an integral part of a complete object-oriented design with all its 

benefits. 
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