
 19

CHAPTER 3

P-TREES: CONCEPTS, IMPLEMENTATION,

AND APPLICATION PROGRAMMING INTERFACE

3.1. Concepts

Most storage systems view data as a collection of tables. These tables can be stored

row by row as is done in the common record-based storage formats. Chapter 2 motivated a

column-wise storage format in which tables are broken up into columns and columns are

further broken up into individual bit positions. Each bit position can be considered a bit

vector. The bit vectors can be seen as indexes to records that have the corresponding bit

set. Identifying records that correspond to a particular attribute value or collection of

attribute values, in this setting, requires a bit-wise AND operation on all the bit vectors

involved. The bit vectors are likely to contain long sequences of 0 or 1 values. We,

therefore, use a compressed format, the P-tree format. P-trees were initially designed for

spatial data that show homogeneity due to the spatial continuity of the data [1].

Multimedia data also show homogeneity in the time dimension [2]. Homogeneities in data

can occur for other reasons. Join operations in databases lead to replication of some table

entries. Depending on the join algorithm, some these replicated entries appear in sequence

and can be compressed in a bit-column-wise storage. Sparseness of 1 values furthermore

leads to long sequences of 0 values [3]. For data that do not show any homogeneity, a

sorting scheme that improves compression of P-trees significantly is introduced. We look

at the creation of P-trees as a two-step process in which we first choose an appropriate

ordering of records, as explained in Section 3.1.1, and then break up columns into bit

vectors and compress them by eliminating pure quadrants; see Section 3.1.2.

 20

3.1.1. Choosing an Ordering

P-trees gain their compression potential from bit-subsequences that are entirely

composed of 0 or 1 bits. In image data, spatially close pixels are likely to be similar in

other properties because they often belong to the same object or natural environment. It is

important to maintain the property of spatial closeness when mapping the two-dimensional

structure space to the one-dimensional P-tree representation. Many space-filling curves

have been suggested with the goal of maintaining continuity when mapping n dimensions

to one; see Figure 3.1.

Figure 3.1. Space-filling curves.

While Hilbert ordering is slightly better at keeping close regions close, Peano- or

Z-ordering, which is also called recursive raster ordering, has significant algorithmic

advantages. In Peano-ordering, the n coordinates of the n-dimensional space are

transformed into one 1-dimensional coordinate by a simple process of interleaving bits.

 21

Figure 3.2 demonstrates the process in two dimensions. The point at x = 2 and y = 1 will

be at position s = 6 in the Peano-ordered sequence.

 Figure 3.2. Construction of a Peano-ordered sequence through
 interleaving of bits.

In general, for d attributes, with b bits each, a particular structural position, p, will

have index s in the sequence, where s is given by the following definition:

∑∑
−

=

−

=
−−

+=
1

0

1

0

)(
12

b

i

d

j

j
ib

jdi ps , (1)

where bit number 0 is the highest-order bit for all position attributes and)(j
ip is bit number

i of the jth structural attribute.

It is interesting to examine this transformation from a different viewpoint. The

highest-order bits in the original coordinates give the coarsest grouping of data points. In

Chapter 2, we referred to them as the highest level in a concept hierarchy.

 22

Correspondingly, they are the most relevant ones in grouping data points according to their

location. Therefore, we first use the highest-order bit in each dimension to determine the

place in the Peano sequence. Once we have used all highest-order bits, we continue by

progressing down the concept hierarchy.

For image data, the spatial coordinates themselves do not have to be stored because

each pixel is represented. Starting coordinates, resolution, and the definition of the pixel

order, therefore, uniquely define the position for each pixel in the image. Spatial

coordinates are neither stored in our P-tree representation nor in common image formats.

Other data do not necessarily have such structural dimensions. Many data sets that are

used in machine learning and data mining have key attributes that do not fully explore their

domain, or use arbitrary identification numbers as keys that have no relationship with the

remaining data. If the key attributes do not fully explore their domain, a representation in

the domain space of the key attributes can still be used but may incur a high storage cost.

Attribute combinations that are not represented in the data set would now have to be

included, and an additional mask would have to be constructed to identify meaningful

points. When using P-trees, we do not commonly take this route. Instead, we represent all

attributes as P-trees and construct any necessary indexes on the fly by an AND operation.

3.1.2. Generalized Peano-order Sorting

Whereas spatial data are given in a form that is sorted according to their spatial

coordinates, other data commonly are not sorted at all or sorted according to an irrelevant

identification number. It may then be advisable to choose an ordering that benefits

compression; i.e., an ordering that has long sequences of 0 values and 1 values. If we sort

 23

according to a particular bit, b0, this bit will have no more than one contiguous sequence of

0’s and one of 1’s, which will lead to very good compression for this bit. If we sort

according to the combination of two bits, b0 b1, i.e., consider them a two-bit integer with

higher order bit b0, the compression of b0 will be as before, and b1 will consist of up to four

contiguous sequences of 0 and 1 values. It is straightforward to use all bits of all attributes

for sorting. We try to optimize compression by pursuing a second goal. If two bits of two

attributes, bi and bj, are highly correlated, sorting according to bi will also benefit the

compression of bj; i.e., we would like to choose those bits that are correlated most strongly

with others as highest-order bits for the purpose of sorting. One solution to this goal is

closely related to the Peano ordering concept. For Peano order, the highest-order bits of all

attributes determine the ordering before lower level bits are considered. In generalized

Peano-order sorting, we do the same when sorting according to feature attributes. The

numbers that determine the sequence are constructed from the bits of all attributes in the

following way: We start with all highest-order bits of numerical attributes as well as bits

that correspond to Boolean attributes. The order between these highest-order bits is chosen

randomly or from domain knowledge. For binary classification tasks, it is usually

beneficial to use the class label as the highest-order bit because the class label attribute is

involved in many AND operations. Next in sequence are the second highest bits of

numerical attributes. They are grouped together with categorical attributes that require two

bits for their representation, i.e., have a domain of 3 or 4 values. We encode categorical

data by randomly assigning labels. Appropriate choice of distance measures ensures that

differing labels are always considered to have distance 1 irrespective of the integer value

they could be seen to represent. Equal values are considered to have distance 0. Chapter 2

 24

discussed the procedure from a distance metric perspective. The example in Table 3.1

shows the bit order for two integer-valued and two categorical attributes. For integer-value

attributes, bit 0 is the highest-order bit, and for categorical attributes, it may be arbitrarily

chosen. Another example that highlights the Peano-order aspects of this sorting strategy

can be found in Section 5.2.1. Note that the bits of categorical attributes can all be grouped

together because they are at the same level in the concept hierarchy. Different bits of

categorical attributes are treated as equivalent everywhere in the data mining code. In

general, the nth step groups the nth bit of numerical attributes together with all n bits of a

categorical attribute with a domain of [2n-1,2n) values. This strategy is chosen because

categorical attributes that are represented by n bits can cover as many values as numerical

attributes of which only the n highest-order bits are considered. If an attribute with many

values is used for sorting, sequences naturally become fragmented. Therefore, attributes

with small domain should be used first, together with the higher order bits of numerical

attributes. In this interpretation, the n highest-order bits of a numerical attribute can be

seen as defining a numerical attribute with a correspondingly limited domain.

Table 3.2 shows an example of a data file for the attribute bits in Table 3.1. Note

how c0 show high compression despite the fact that it is not used for sorting. The reason is

that the data show a correlation between the highest-order bit in age and gray hair color.

The data also show a correlation between the highest-order bit in height and sex, which

allows compression for bit s0.

 25

Table 3.1. Bit order in generalized Peano-order sorting.

Attribute name Attribute type Represented

bit positions

Domain description

Age 7-bit integer a0 ... a6

Height in feet 3-bit integer h0 ... h2

Sex 1-bit categorical s0 Domain label

male 0

female 1

Hair color 3-bit categorical c0 ... c2 Domain label

red 000

blond 001

brown 010

black 011

gray 100

Bit order used for sorting:

bit position 0 1 2 3 4 5 6

attribute bits a0 h0 s0 a1 h1 a2 h2 c0 c1 c2 a3 a4 a5 a6

The decision about whether it is efficient to include the extra sorting step depends

on the expected use of the data. Figure 3.3 shows the number of nodes in a P-tree that are

required without sorting, using simples sorting, and with generalized Peano sorting. The

number of P-tree nodes is proportional to the storage requirements.

 26

Table 3.2. Example of a data set that was sorted using the bit-order in Table 3.1.

a0 h0 s0 a1 h1 a2 h2 c0 c1 c2 a3 a4 a5 a6

0 0 1 0 1 1 1 0 1 1 1 1 1 0

0 0 1 1 0 0 1 0 0 1 0 1 0 0

0 1 0 0 1 1 0 0 1 0 1 1 1 0

0 1 0 1 1 1 1 0 0 0 1 0 1 1

1 0 0 0 1 0 0 1 0 0 1 0 0 0

1 1 0 1 0 0 0 1 0 0 0 1 1 1

Impact of Sorting on Storage Requirements

0

10000

20000

30000

40000

50000

60000

ad
ult

sp
am

mus
hr

oo
m

fun
cti

on cro
p

P
-t

re
e

N
od

es

Unsorted

Simple Sorting

Generalized Peano
Sorting

Figure 3.3. Number of P-tree nodes for different sorting schemes (data
sets as explained in Chapter 4, with the crop data set restricted to 3 105
data points).

Good compression is not only beneficial to storage requirements. The speed of

algorithms strongly depends on the number of P-tree nodes that are involved in the

calculations. Efficient P-tree implementations do not require examining branches of any P-

tree involved in an AND operation if at least one tree is known to be composed entirely of

 27

0 bits, as will be explained in the next section. Figure 3.4 shows that the execution speed is

significantly more affected by sorting, in particular generalized Peano sorting, than the

storage requirements depicted in Figure 3.3 would have suggested. Times are based on the

classification of 100 data points using rule-based P-tree classification as explained in

Chapter 4.

Impact of Sorting on Execution Speed

0

20

40

60

80

100

120

ad
ult

sp
am

mus
hr

oo
m

fun
cti

on cro
p

Ti
m

e
in

 S
ec

on
ds Unsorted

Simple Sorting

Generalized Peano
Sorting

Figure 3.4. Time for the classification of 100 data points using rule-based
classification as explained in Chapter 4.

3.1.3. Compression

Once an ordering has been established, the table is broken up into attributes, and

attributes into bit-sequences, that are referred to as P-sequences. If optimal compression

was desired, we could use run-length compression for the individual bit-sequences. The

problem with such a scheme is that we routinely have to perform Boolean operations on the

P-trees in response to queries and as part of data mining operations. We, therefore, choose

a format that allows efficient execution of Boolean operations among P-trees while the data

 28

are compressed. To achieve this goal, it is beneficial if compression boundaries match

among different bit-sequences. A tree structure is chosen that allows the hierarchical

definition of boundaries. We will first describe the logical structure of a P-tree and then

proceed to look at implementation choices that make P-tree operations more efficient.

Logically, a P-tree can be seen as a tree in which each level-0 node (lowest level)

represents one bit of the data. Each level-1 node in the tree has f level-0 nodes as children,

where f is the fan-out of the tree. The fan-out is chosen to be a power of 2, or a power of 2d

for d-dimensional data. For the purpose of this thesis, the fan-out is chosen to be constant

for the entire tree. In principle, a different fan-out could be chosen for different levels. If

all f children of the node are 0, the node is called "pure 0"; if all are 1, the node is called

"pure 1"; in all other cases, the node is called "mixed." This statement is generalized at

higher levels in the tree. If all f children of the node are "pure 0," the node is called "pure

0"; if all are "pure 1," the node is called "pure 1"; in all other cases, the node is called

"mixed." A level-0 node that represents the bit 0 (1) can, therefore, be seen as a special

case of a "pure 0" ("pure 1") node. Note that level-0 nodes cannot be "mixed." Children of

"pure 0" ("pure 1") nodes do not have to be stored since they are guaranteed to be "pure 0"

("pure 1") at any level. P-trees achieve compression through nodes that do not have to be

stored. Figure 3.5 shows the structure of a P-tree.

A node can be have three states, "mixed," "pure 0," and "pure 1," that can be

represented using two Boolean variables. If the tree structure can be inferred from separate

information, such as node addresses or the existence of child pointers, one bit is sufficient.

The existence of child node information then automatically identifies a node as "mixed."

 29

For computational reasons, it may nevertheless be useful to represent two bits at each node.

In the following section, we will look at different implementation options.

Figure 3.5. Structure of a P-tree.

3.2. Implementation

The logical definition of a P-tree does not uniquely specify its representation within

a computer program. The tree structure itself can be maintained through pointers, node

addresses, or as a sequence. Some implementations will, furthermore, represent child or

even grandchild information within each node to improve efficiency. Four main types of

implementations have been used in the past: quadrant-ID-based; tree-based; sequence-

based; and array-converted, tree-based implementations. We will limit our discussion to

those representations that can be seen as precursors to the array-converted, tree-

implementation that has been implemented and used for this thesis. Before discussing

differences among implementations, we will review some commonalities.

 30

3.2.1. AND Operation

We frequently have to perform AND operations on P-trees. Appendix A gives a

formal definition of an AND operation. The basic strategy of most implementations of the

AND consists of determining those nodes that are guaranteed to be "pure 1" (nodes that are

"pure 1" for all trees that are being ANDed) and nodes that are guaranteed to be "pure 0"

(nodes that are "pure 0" for at least one tree that is being ANDed). The remaining nodes

can be either "pure 0" or "mixed," and sub-trees have to be examined. Two main criteria

for fast ANDing can be extracted from this description. Taking the AND of "pure 1"

information and the "OR" of "pure 0" information must be fast. To this end, we make use

of the parallelism of bit vector representations. We also have to be able to find children

quickly. This goal can be achieved through pointers (See Section 3.2.3.) or storage of array

indices (See Section 3.2.5.). Storing the pre-order sequence of a tree allows fast retrieval

of the first child. Retrieving later children requires parsing all previous ones, which

decreases performance when one or more children can be eliminated entirely because they

are being ANDed with a pure 0 node.

3.2.2. Bit Vector Operations

Many implementations, to some extent, use the concept of bit vectors. To do so,

the purity information of the children of a given node is collected into one or more bit

vectors, called a child-purity vector. Internally, bit vectors are represented through integer

types or arrays thereof. The size of each child-purity vector is given by the fan-out of the

tree, i.e. the maximum number of children per node. A key factor in optimizing P-tree

operations lies in the efficient use of the inherent parallelism that comes with the use of bit

 31

vectors. Bit-wise Boolean operations on integers can be done in one machine cycle and

correspond to the parallel execution of 32 or 64 Boolean operations depending on system

architecture. Bit vectors also allow an efficient implementation of bit counting. Most data

mining algorithms rely on determining the number of data points that satisfy a particular

condition which, in the context of P-trees, is the number of 1 bits that result from Boolean

operations on P-trees. One possible counting algorithm would evaluate the number of

occurrences of 1 in an integer by shifting the number one bit at a time. A faster

implementation takes several bits and determines the number of 1 bits through table look-

up. Bit sequence 0110, for example, has two bits set to 1. In a look-up table, we would

store the value 2 as the number of bits for index 6, the number that 0110 represents. The

same strategy can be used to determine the position of the first 1 bit in a bit vector. This

strategy for counting and finding the first 1 bit works well for 8 bits with 256 entries in a

look-up table. It is not efficient beyond 8 bits because the look-up table would become too

large.

A general consideration is how to choose the size of bit vectors. In most

representations, that size is equal to the maximum number of children, or the fan-out of the

tree. For a structural dimension of 2, it is natural to choose a fan-out of 4. Each node in

the tree then has four children, each of which represents a quarter, or quadrant, of the

parent node range. Choosing a larger fan-out increases parallelism and can significantly

improve the ANDing speed of P-trees. The current implementation was optimized for 32-

bit registers. Thirty-two-bit vectors naturally represent a P-tree in 5 structural dimensions

and cannot well be justified for 2-dimensional spatial data. We, therefore, used a fan-out of

16 that corresponds to collapsing two levels into one for spatial data.

 32

3.2.3. Tree-based Implementations

In tree-based implementations, the tree structure is maintained through pointers.

These pointers can either be provided by the programming language or can be logical

pointers, such as array indices. Using language-provided pointers leads to problems,

referred to as pointer swizzling, if sub-trees are to be distributed over a network. A further

disadvantage of standard pointers is that storage requirements for each pointer cannot be

adapted to the actual address space that the P-tree requires. Using logical pointers such

array indices allows matching the data type to the address space requirements based on the

actual P-tree-size and thereby reducing storage. Using array indices has the further benefit

that arrays are commonly stored contiguously in memory. Iterating through an array is,

therefore, likely to be faster than following pointers to unrelated positions in memory.

A common criticism of tree-based implementations is that the storage requirements

of pointers could easily exceed the storage of nodes. It is correct that a naive

implementation could show this behavior. Figure 3.6 gives a graphical view of different

tree-based representations, each one giving the "pure 1" information. Note that,

theoretically, no "mixed" bit has to be stored because the existence of a child-pointer is

equivalent to "mixed" information. In practice, most tree-based implementations will still

maintain the full child purity information to allow efficient bit-vector-based computations

as well as allowing compressed storage of child-pointers.

It can be seen that the number of pointers is equal to one less than the total number

of nodes. Intuitively, it may seem as if the number of pointers had to scale as the number

of nodes multiplied by the fan-out. The scaling is, however, better since no pointers have

to be maintained at the lowest level. A naive implementation in which nodes represent

 33

their own purity information is nevertheless very inefficient. If the address space is

assumed to be 1 million nodes, corresponding to 20 bits, pointers require 20 times the

storage required by nodes. A representation that maintains the child purity at each node

will improve the ratio, especially for a large fan-out. If we assume the fan-out to be 16, the

storage space for pointers will be comparable to that of the data. We can repeat the process

of representing child information within the parent, leading to a representation of

grandchild purity within each node. A child purity representation has storage requirements

for pointers of approximately 1/fe that of the node representation, where fe is the effective

fan-out, i.e., the number of children that have to be stored. We will discuss this

improvement for the sequence-tree-hybrid implementation. Appendix A systematically

carries through the corresponding transformations.

Figure 3.6. Representations of P-tree structure (pure 1 information displayed).

 34

3.2.4. Sequence-based Implementations

Sequence-based implementations rely on the storage sequence for reconstruction of

the original data. Sequence-based representations can be constructed for any of the three

tree variants discussed previously: nodes that contain their own purity, child purity, or

grandchild purity. The storage sequence alone can only be loss-less if purity information is

allowed to cover the three values of "pure 1," "pure 0," and "mixed." Note that, for tree-

based implementations, "pure 1" (or "pure 0") information alone is sufficient to distinguish

"pure 0" from "pure 1" nodes, with mixed nodes being identified by the existence of a

child. The values in three-value logic are mapped to the computer-supported binary logic

by representing two of the three possible states, such as "pure 1" and "mixed." The third

value ("pure 0") can be inferred from the other two as "pure 0" = ¬ ("pure 1" ∨ "mixed").

An alternative way of describing this implementation is to say that the "mixed" information

represents the tree-structure in a way that is equivalent to, albeit different from, pointers or

node addresses, called quadrant IDs, in other representations.

The storage sequence can be defined according to any of the common tree-walk

strategies, such as depth-first or breadth-first, where a depth-first tree-walk allows further

choices regarding the positioning of node values with respect to each child tree-walk (pre-

order or post-order sequence). In a pre-order sequence, the value of a node is stored before

sequences that are defined by the child nodes. In the next section, ideas from pointer- and

sequence-based representations will be combined for maximum storage and ANDing speed

efficiency.

 35

3.2.5. Array-converted Tree-based Representation

The benefits of tree-based representations, namely the fast access to all child nodes,

can be achieved without the main drawbacks of pointers. If node information is stored in

array form, array indices can easily serve the purpose of pointers. The conversion is

especially easy and efficient for the grandchild purity representation discussed in Section

3.2.3. Grandchild purity information can be grouped by child node. For each mixed child,

an address has to be stored as well as the child’s child-purity vectors; i.e., exactly one array

index has to be stored for each bit vector pair of child-purity information, allowing for a

straightforward array-based storage organization. Figure 3.7 shows an example of an

array-converted, tree-based representation as it was used in the code that was written for

this thesis.

"Pure 1" information together with "mixed" information are used to perform the bit

vector operations necessary in P-tree ANDing. The address sequence, a, maintains the

array indices that act as pointers to child-nodes. Each node contains the full grandchild

purity information, i.e., a bit vector (child-purity vector) for every mixed child. The

example in Figure 3.7 depicts the "pure 1" information above the "mixed" information for

each node. The lowest-level node requires neither mixed information (Level-0 nodes are

pure by definition.) nor addresses (Level-0 nodes have no children.) The count of bits is

furthermore maintained to increase ANDing speed. The key benefit of this representation

with respect to simple sequence-based representations lies in the fact that the branch on the

right side of Figure 3.7 can be located without iterating through the branch on the left side.

Without this property, ANDing speed would not gain serious benefit from compression,

 36

and the improvements in execution speed that were depicted in Figure 4 would not be

possible.

Figure 3.7. Large example that represents the implementation for this thesis.

3.3. Application Programming Interface (API)

Many people use and contribute to P-tree-based data mining code. It is, therefore,

important to make collaboration as easy as possible. Providing a well-defined application

programming interface, API, is central to enabling collaborative programming. The design

of the API was guided by the wish to allow a flexible combination of different P-tree

implementations with a variety of data mining algorithms on a wide choice of data sets.

We, therefore, structured the API into a data mining interface, DMI, that defines how P-

tree code is called from data mining applications and a data capturing interface, DCI, that

specifies the format in which data are read into a P-tree. Figure 3.8 shows the relationships

between the most important classes of the API, using universal modeling language, UML,

notation. The classes will now be explained. Please refer to [4] for a complete UML class

diagram.

 37

Figure 3.8. Relationships among the most important classes in the P-tree API.

At the time of designing the interface, several P-tree implementations were already

in existence. We, therefore, had to be sure that each one of them would fit into our model.

One way of ensuring compliance with existing code was to use two significantly different

implementations, one of which is presented in this thesis, as benchmarks for the feasibility

of any suggestion. A result of this strategy was that we decided to combine P-tree creation

and ANDing into one class, PTreeSet, that holds those basic P-trees that are to be used in

AND operations. PTreeSet may hold complement P-trees as well as basic P-trees if the

implementation requires it. Alternatively, the implementation may opt to construct

complements on the fly. For this and other reasons, it would be limiting to define a class

PTree and insist on how P-trees are to be combined into PTreeSets. Two types of

parameters are used to define the logical structure of a P-tree: the fan-out and the number

of levels. We combined these parameters into a class, PTreeFormat. Some

 38

implementations may allow different fan-out at different levels, whereas others will use

one fan-out for the entire tree. These distinctions were handled by creating sub-classes to

PTreeFormat.

3.3.1. Data Mining Interface (DMI)

The main operation of the DMI consists of requesting a count as a result of an AND

operation on a particular combination of P-trees (andCnt(PTreeSpec)). The central

construct that allows defining the combination of the P-trees that are to be ANDed is the

P-tree specification, PTreeSpec. The P-tree specification consists of a bit-pattern,

“pattern,” that is 1 if a basic P-tree is to be included in the AND and 0 for a complement

P-tree. A second bit vector, “mask,” specifies those P-trees that are to be included in the

AND. In principle, it is possible to set the bits in both of those bit vectors individually. In

practice, especially for a large number of P-trees, it is not advisable to do so.

Much of the work on the DMI was guided by the need that arises from the

complexity of dealing with several hundred P-trees that belong to dozens of different

attributes, representing many different data types. A main decision that was taken was to

allow access to P-trees based on attributes, or bands, as well as relative indexes within

those attributes. Bands can be identified by their name. In practice, access by a sequential

number was determined to be at least as important. P-trees that belong to one band can be

distinguished by an index within the band. At a still higher level, one may wish to use

methods that increase or decrease intervals in a type-independent fashion rather than

explicitly dealing with indexes within a band. Such methods were included into sub-

classes of PTreeSpec that were used for the programs described in this thesis. The high-

 39

level methods were intentionally not included into the DMI with the intent of maintaining

simplicity for programmers who may not need such generality. The possible need to

identify band types did, however, motivate a set of classes that preserves meta-data

information from the data file. In an initial design of the API, we underestimated the need

of making meta-data information available to data mining code. The programs written for

this thesis demonstrated the need to improve the design and formally allow the transfer of

meta-data information from a data file to data mining code through a class, BandInfo.

The BandInfo class maintains information regarding the type of band, such as

whether it can have unknown values as well as type-related information. A band with

unknown values requires an additional P-tree that identifies those data points for which the

particular band information has been provided. BandInfo also maintains the position of the

particular band within the PTreeSet. Each BandInfo object may, therefore, only be part of

one PTreeInfo object that goes with one PTreeSet. Different types of bands, such as

integer, bit vector, and categorical bands, differ in the way they represent distances and

intervals. Categorical attributes only allow two distances, distance 0 if values are identical

and distance 1 if they differ, with no other distances defined. A single-valued categorical

attribute may be represented by a label, such as red = 0, green = 1, blue = 2, provided

distances are guaranteed to be evaluated correctly. Label-encoded categorical attributes are

represented by class CatBandInfo. Multi-valued categorical attributes are commonly

represented by bit vectors where each domain value is represented by one bit. Distance 1

now corresponds to one matching bit with multiple bits combined through OR. Requiring

all bits to match (AND), as in the case of label-encoded integers, would correspond to

requiring each of the multiple values to match, which clearly does not represent the

 40

common understanding of matching values. Multi-valued categorical attributes are not yet

integrated into the API.

The BandInfo sub-classes, such as IntBandInfo and CatBandInfo, offer specialized

implementations of methods such as getDataMeaning(bit_vector) and

getRepresentation(string) which allow translating back and forth between the conventional

representation of the data and the bit vector representation used within the P-tree code.

BandInfo objects are collected into a central PTreeInfo class that maintains all information

related to a particular PTreeSet. Each PTreeSet holds a PTreeInfo object that is updated

whenever a band is added to the PTreeSet.

3.3.2. Data Capture Interface (DCI)

The data capture interface was designed to make file reading independent of the

P-tree implementation. Independence is achieved by supplying a PTreeFeeder class for

each file-format that is to be read. The PTreeFeeder class offers a method getPoint that

returns the data for one data point as an object of type DataPoint. Each object of type

DataPoint consists of a key (retrievable by method getLocation()) as well as a bit vector

that contains the bit values for all basic P-trees (retrievable by getData()). It is important to

note that information is passed one data point at a time; i.e., no separate data structure has

to be held in memory to supply the data that are used to construct P-trees. Most

PTreeFeeder classes are implemented to read data from a stream, such as a file, when the

getPoint() method is called. Note that PTreeFeeders do not have to be implemented this

way. Data can also be the result of a database query or may be read into an array first and

 41

read from the array for each call of getPoint(). The latter options are important if data are

to be sorted according to one or many of the feature attributes.

The DataPoint and PTreeFeeder classes need to know nothing about P-tree format

other than that it is a bit-wise representation. Since a DataPoint provides only one bit for

any one P-tree, it is unaffected by the actual P-tree storage or compression, or by Peano

ordering. Peano ordering can be seen as separate from both the file reading and the P-tree

implementation. The conversion from location information into quadrant identifier

information (qid) was, therefore, moved into a separate class QIDConverter. An important

goal of both the DCI and the DMI was to keep those classes that have multiple

implementations as small as possible, e.g., the PTreeFeeder that requires a separate

implementation for every file format. The PTreeSet class also has many implementations

that are beneficial for different types of data. Any responsibility that can be transferred to

supporting classes reduces the effort of implementing any of the classes of which multiple

variants are necessary or desired.

The PTreeFeeder class does have to construct the BandInfo objects that hold meta-

data and offer methods for use by data mining algorithms. Meta-data can come from the

data file itself or may be even be determined by the fact that a particular file format is used.

Tiff color images, for example, will always contain integer-valued information, and bands

will be required; i.e., there will be no pixels that have information on red and green

intensities but no value for blue. For more general data formats such as data from the

University of California at Irvine, UCI, machine learning repository, meta-data have to be

read from a separate file.

 42

Additional supporting classes can be and have been implemented, e.g., to clean data

that come from particular data files or to assist in common data mining tasks such as the

calculation of averages, use of HOBbit-based Gaussian weight functions, etc. Most of these

supporting classes are not considered part of the API but may be included if many people

use them.

3.4. P-tree API as an Example of a Column-based Design

We will now look at the P-tree API in the light of column-based data organization

as was discussed in Section 2.6. The entity that represents the main data mining table,

PTreeSet, is considered as one class, as is the case normally when records are treated as an

object. Bit-columns are represented in P-tree format using a special class, PTree, to handle

the compression and hierarchical organization. Class PTree is not part of the API since its

interface is implementation dependent. The implementation that was done for this thesis

does, however, have a distinct class PTree, as do most other implementations.

A generic implementation of operations among P-trees is not easy due to their

hierarchical structure and was not attempted in the context of this thesis, although plans for

such an implementation are currently being developed. The main operation on P-trees is

the AND operation that determines (the number of) those rows that match a sample in a

specified sub-set of its attribute bits. This operation requires the ability of specifying a

row, which is done using class PTreeSpec. The interesting aspect of this class is that it

represents a complete row that has to match all attribute definitions of the data mining

table, PTreeSet. Operations on the row specification class, PTreeSpec, rely on some

knowledge of the attributes in the data mining table, PTreeSet. We, therefore, need a class

 43

to maintain header information, PTreeInfo. Since the header information has to match the

attributes in PTreeSet, a PTreeInfo object is contained within the class that represents the

PTreeSet object. A new copy has to be retrieved whenever a row specification (object of

class PTreeSpec) is constructed. Header information is, furthermore, broken up into

attribute headers, BandInfo. Attribute header objects represent type information as well as

maintaining methods that can be used in the manipulation of row specification, PTreeSpec,

objects. PTreeSpec does not maintain methods that are to be used by the data mining table,

PTreeSet, itself; otherwise, the performance issues of using method calls on a large number

of rows would recur.

Our design, therefore, requires a minimum of five classes, PTreeSet, PTree,

PTreeSpec, PTreeInfo, and BandInfo, to represent a single column-based table, with

additional classes used to handle compression specific issues such as PTreeFormat and

QIDConverter that were discussed in the previous sections. A row-based implementation

would require no more than two classes, one that represents a row and a container class to

allow access to all rows. This difference shows that an object-oriented implementation of a

column-based data structure does indeed use more classes than a row-based

implementation. It should not, however, discourage the use of an object-oriented

implementation since it was performance that guided our design. The benefit of using an

object-oriented design can be seen from previous sections that demonstrated how the table

implementation becomes an integral part of a complete object-oriented design with all its

benefits.

 44

3.5. References

[1] Q. Ding, W. Perrizo, and Q. Ding, “ On Mining Satellite and Other Remotely Sensed

Images,” Workshop on Data Mining and Knowledge Discovery (DMKD-2001), Santa

Barbara, CA, 2001.

[2] W. Perrizo, W. Jockheck, A. Perera, D. Ren, W. Wu, and Y. Zhang, "Multimedia Data

Mining Using P-trees," Multimedia Data Mining Workshop of the Conference on

Knowledge Discovery and Data Mining (KDD-2002), Edmonton, Canada, June 2002.

[3] A. Perera, A. Denton, P. Kotala, W. Jockheck, W. Valdivia Granda, and W. Perrizo,

"P-tree Classification of Yeast Gene Deletion Data", SIGKDD Explorations, Vol. 4, No 2,

pp. 108-109, Dec. 2002.

