
DECISION TREE INDUCTION FOR DYNAMIC, HIGH-DIMENSIONAL DATA
USING P-TREES1

Anne Denton and William Perrizo
Department of Computer Science,

North Dakota State University
Fargo, ND 58105-5164, USA

{Anne.Denton, William.Perrizo}@ndsu.nodak.edu

Abstract1

Decision Tree Induction is a powerful classification
tool that is much used in practice and works well for static
data with dozens of attributes. We adapt the decision tree
concept to a setting where data changes rapidly and
hundreds or thousands of attributes may be relevant.
Decision tree branches are evaluated as needed, based on
the most recent data, focusing entirely on the data that
needs to be classified. Our algorithm is based on the
P-tree data structure that allows fast evaluation of counts
of data points, and results in scaling that is better than
linear in the data set size.

Keywords: Information Systems, Data Mining,
Classification, Decision Tree Induction, P-Trees.

1 INTRODUCTION

A typical classification task consists of predicting a
discrete property, such as whether a patient is sick,
whether an e-mail message is spam, or whether a protein
has a particular function. Traditionally a handful of
attributes were used for the prediction. When evaluating
whether a patient has a particular disease a doctor may do
a dozen tests and use the results for his conclusion.
Decision tree algorithms, such as C4.5 [1] and its
successors, have proven extremely useful in this setting.
Modern data mining problems are, however, often
different in nature. When predicting the function of a
gene, researchers can draw on a wealth of information
that has been collected in biological databases and may
contain thousands of relevant properties. Traditional
decision tree algorithms are not suitable in this setting
because, in any one prediction, they only use the
information of a small number of attributes. Including
more attributes would result in decision tree branches that
are represented by few or no training points and cannot
provide statistically significant information, a problem
known as the curse of dimensionality [2]. Our algorithm

1 Patents are pending on the P-tree technology. This work
is partially supported by GSA Grant ACT#: K96130308,
NSF Grant OSR-9553368 and DARPA Grant DAAH04-
96-1-0329.

builds decision tree branches around the sample that is to
be classified (lazy classification). That means that the
data set is not broken up unnecessarily by attribute values
that are irrelevant to the sample in question. We
consistently follow the ideal of an entirely instance-driven
classification even when continuous attributes are
involved. Whereas traditional decision tree algorithms,
including lazy decision tree induction [3], discretize the
data based on the data set available at training time, our
algorithm uses intervals that are based on the test sample.

In contrast to other instance-based, such as Parzen
window [4], kernel Podium [5], and k-nearest neighbor
classification, our algorithm has a powerful attribute
selection mechanism similar to decision tree algorithms.
Kernel- and window-based techniques do not normally
weight attributes according to their importance. For
categorical attributes, this limitation is particularly
problematic because it only allows two possible distances
for each attribute, such as distance 0 if the values of
categorical attributes match and 1 otherwise. Solutions
that have been suggested include weighting attribute
dimensions according to their information gain [6];
optimizing attribute weighting using genetic algorithms
[7]; selecting important attributes in a wrapper approach
[8]; and, in a more general kernel formulation, boosting as
applied to heterogeneous kernels [9]. All of these
approaches increase the algorithmic complexity and are
therefore unsuitable to the typically large data set sizes
encountered in data mining.

A further problem with traditional decision tree
algorithms is that the classifier, i.e., the decision tree, has
to be constructed every time the data changes. That is
unacceptable in settings were new data arrives rapidly,
such as predictions in computer networks. We use the P-
tree data structure [10] to compute counts on the current
data in a way that typically scales less then linear with
data set size. The favorable scaling is achieved by a bit-
column-wise storage organization in which sections of
columns that are purely composed of 0 or 1 values at
every level are eliminated from the calculation of counts.
This leads to a best-case complexity that is logarithmic in
the number of data points.

Section 2 discusses the algorithm, Section 3 presents
our experimental setup and results, and Section 4
concludes the paper.

2 ALGORITHM

Our algorithm is loosely based on decision tree
induction [1] in selecting attributes successively based on
their relevance to the classification task. Data points that
match in all selected attributes are considered relevant to
the prediction task and the class label of the sample of
interest is determined from the plurality of votes among
those points. Attribute selection is based on optimizing
the gain of information as defined by Shannon [12]. In
contrast to conventional decision tree induction [1] tree
branches are constructed as needed according to the
sample that is to be classified, similar to lazy decision tree
induction [3]. The main differences compared with [3] lie
in our treatment of continuous attributes using a window
function and the efficient count calculation using P-trees.

2.1 P-trees

The P-tree data structure was originally developed
for spatial data [10] but has been successfully applied in
many contexts [11,13] and is in describe in detail in those
publications. P-Trees store bit-columns of the data in
sequence to allow compression as well as the fast
evaluation of counts of records that satisfy a particular
condition. A tree-based structure replaces subtrees that
consist entirely of 0 values by a higher level "pure 0"
node, and subtrees that consist entirely of 1 values by
higher level "pure 1" nodes. The number of records that
satisfy a particular condition is now evaluated by a bit-
wise AND on the compressed bit-sequences. Figure 1
illustrates the storage of a table with 2 integer and one
Boolean attribute. The number of records with A1 = 12
(i.e. the bit sequence 1100) is evaluated as a bit-wise
AND of the two P-Trees corresponding to the higher
order bits of A1 and the complements of the two P-Trees
corresponding to the lower order bits. This AND
operation can be done very efficiently for the first half of
the data set, since the single high-level 0-bit already
indicates that the condition is not satisfied for any of the
records. This is the basis for a scaling better than O(N)
for such operations.

Figure 1: Storage of tables as hierarchically compressed
bit columns

The efficiency of P-tree operations relies on the
compression of the bit sequences, and thereby on the
ordering of rows. For data that shows inherent continuity,
such as spatial or multimedia data, such an ordering can
be easily constructed. If data shows no natural continuity
it may be beneficial to sort it. We sort according to all
highest order bits first. Figure 1 indicates at the bottom
the sequence in which bits are used for sorting.

2.2 HOBbit Distance

The nature of a P-tree-based data representation with
its bit-column structure has a strong impact on the kinds
of algorithms that will be efficient. Determining the
number of points in an interval that is defined by the
HOBbit distance [11] requires only one AND operation
and is therefore particularly efficient:







≠



≠



+

=
= ∞

= tsj
t

j
s

j

ts

tsHOBbit aaaaj

aa
aad for)

22
|1(max

for0
),(

0

where as and at are attribute values, and   denotes the
floor function. The HOBbit distance can also be
understood as the number of bits by which two values
have to be right-shifted to make them equal.

2.3 Pruning

It is well known that decision trees have to be
pruned to work successfully [1]. Information gain alone
is, therefore, not a sufficient criterion to decide which
attributes to use for classification. We use statistical
significance as a stopping criterion, similar to decision
tree algorithms that prune during tree construction. In our
algorithm, significance is calculated on a different subset
of the data than information gain to get a statistically
sound estimate. The training set is split into two parts,
with two-thirds of the data being used to determine
information gain and one-third to test significance
through Fisher’s exact test [14]. An attribute is considered
relevant only if it leads to a split that is significant, e.g., at
the 1% level. The full set is then taken to determine the
predicted class label through plurality vote.

2.4. Pursuing Multiple Paths

The number of attributes that can be considered in a
decision-tree-like setting, while maintaining a particular
level of significance, is limited due to the "curse of
dimensionality" [2]. Although our algorithm suffers less
from this problem then conventional decision tree
techniques due to its focus on the sample attributes, we
still observe a benefit from combining multiple classifiers
to get better statistics. A similar approach is taken by
bagging algorithms [15]. We use a very simple
alternative in which several branches are pursued, each
starting with a different attribute. The attributes with the
highest information gain are picked as starting attributes,

and branches are constructed in the standard way from
thereon. The votes of all branches are combined into one
final vote. This modification leads to a particularly high
improvement for data sets with many attributes because it
gives some attributes a vote that would not otherwise
have one.

3 IMPLEMENTATION AND RESULTS

We implemented all algorithms in Java and
evaluated them on 7 data sets. Data sets were selected to
have at least 3000 data points and a binary class label.
Two-thirds of the data were taken as a training set and
one-third as a test set. Due to the consistently large size
of data sets, cross-validation was considered unnecessary.
All experiments were done using the same parameter
values for all data sets.

3.1 Data Sets

Five of the data sets were obtained from the UCI
machine learning library [16] where full documentation
on the data sets is available. These data sets include the
following:
• adult data set: Census data are used to predict

whether income is greater than $50,000.
• spam data set: Word and letter frequencies are used

to classify e-mail as spam.
• sick-euthyroid data set: Medical data are used to

predict sickness from thyroid disease.
• kr-vs.-kp (king-rook-vs.-king-pawn) data set:

Configurations on a chess board are used to predict
if "white can win."

• mushroom data set: Physical characteristics are used
to classify mushrooms as edible or poisonous.

Two additional data sets were used. A gene-

function data set was generated from yeast data available
at the web site of the Munich Information Center for
Protein Sequences [17]. The highest level of the gene
localization, protein class, complex, pathway and
phenotype hierarchies were used to predict a function,
"metabolism." Since proteins can have multiple
localizations and other properties, each domain value was
taken as a Boolean attribute that was 1 if the protein is
known to have the localization and 0 otherwise leading to
146 Boolean attributes. A second data set was generated
from spatial data. The RGB colors in the photograph of a
cornfield are used to predict the yield of the field. Class
label is the first bit of the 8-bit yield information; i.e., the
class label is 1 if yield is higher than 128 for a given
pixel. No preprocessing of the data was done. Some
attributes, however, were identified as being logarithmic
in nature, and the logarithm was encoded in P-trees:
"capital-gain" and "capital-loss" of the adult data set, and
all attributes of the "spam" data set.

3.2 Results

Table 2 compares the results for our decision-tree-
based algorithm with the results for C4.5. It can be seen
that for the bioinformatics data set the error rate clearly
decreases for both lazy decision tree implementations.
This supports the claim that while C4.5 is suitable for data
sets with a small number of attributes of traditional data
sets, its usefulness decreases in the face of new
applications such as bioinformatics data with hundreds of
attributes. Note that the gene-function data set is still
smaller than most data sets in the bioinformatics field. It
can furthermore be seen that the lazy decision tree
algorithm that involves 20 paths is competitive all data
sets, which is a significant achievement since C4.5
involves many advanced tree pruning steps that cannot be
done for lazy classification that lacks the extensive tree
construction phase.

Table 1. Error Rates of decision-tree-based classification.

 C4.5

Decision-
tree-
based (+/-)

20
paths

adult 14.0 16.0 0.3 14.9
spam 7.2 11.5 0.9 7.1
sick-
euthyroid 2.2 2.8 0.5 2.9
kr-vs-kp 0.5 1.7 0.4 0.8
mushroom 0 0 0 0
gene-function 15.7 15.5 0.8 15.5
crop 19.0 18.8 0.2 19.0

3.3 Decision-tree Results Compared with 20 Paths

20 Paths vs. 1 Path

-2

0

2

4

6

adult sick-
euthyroid

gene-
function

R
el

at
iv

e
A

cc
u

ra
cy

Figure 4. Difference between a vote based on 20 paths
and a vote based on 1 path in the decision-tree-based
algorithm in units of the standard error.

For the decision-tree-based algorithm a significance

level of 1% was chosen. Information gain was calculated
on two-thirds of the training data with significance being
evaluated on the rest. The final vote was based on the

entire training set. Accuracy was generally higher when a
maximum of 20 paths were pursued. It can be seen in
Figure 4 that the difference is particularly large for the
spam data set that has many continuous attributes, which
is a setting in which the algorithm is expected to work
particularly well. The crop data set only had three
attributes and therefore did not benefit.

3.3 Performance

Standard decision tree algorithms, whether they are
eager or lazy, are based on database scans that scale
linearly with the number of data points. The linear
scaling is a serious problem in data mining problems that
deal with thousands or millions of data points. A main
benefit of using of P-trees lies in the fact that the AND
operation that replaces database scans benefits from
compression at every level. As a consequence, we see
significantly sub-linear scaling. Figure 6 shows the
execution time for decision-tree-based classification as a
function of the number of data points for the adult data
set. The solid line indicates a linear fit of the data. The
actual performance results clearly show a less significant
increase in execution time with data set size.

0

20

40

60

80

0 10000 20000 30000

Number of Training Points

Ti
m

e
pe

r
Te

st
 S

am
pl

e
in

M

ill
is

ec
on

ds

Figure 6. Scaling of execution time as a function of
training set size. Diamonds correspond to measured
execution time, and the line to a linear interpolation.

4. Conclusions
We have introduced a lazy decision-tree-based

classifier that is particularly suitable to high-dimensional
data and data that changes frequently. Our algorithms
uses distance information within continuous attributes
consistently by considering neighborhoods with respect to
the unknown sample. Performance is achieved by using
the P-tree data structure that allows efficient evaluation of
counts of training points with particular properties.
Neighborhoods are defined using the HOBbit distance
that is particularly suitable to the bit-wise nature of the P-
tree representation. We show that accuracy of our
classifier can be improved by constructing multiple
branches. We could show that for a bioinformatics data

set, with many attributes, the accuracy of our algorithm is
higher than that of C4.5. For traditional data sets with
few attributes accuracies are comparable to C4.5 without
the need of constructing and pruning a full decision tree.
Finally, we showed that our algorithm has better than
O(N) scaling with the number of training points.

References

[1] J. R. Quinlan, "C4.5: Programs for Machine
Learning," Morgan Kaufmann Publishers, San Mateo,
CA, 1993.
[2] D. Hand, H. Mannila, and P. Smyth, "Principles of
Data Mining," The MIT Press, Cambridge, MA, 2001.
[3] J. Friedman, R. Kohavi, and Y. Yun, "Lazy Decision
Trees," 13th Nat. Conf. on Art. Intell., 1996.
[4] R. Duda, P. Hart, and D. Stork, "Pattern
Classification," 2nd edition, John Wiley and Sons, New
York, 2001.
[5] W. Perrizo, Q. Ding, A. Denton, K. Scott, Q. Ding, M.
Khan, "PINE-Podium Incremental Neighbor Evaluator for
Spatial Data Using P-trees," Symposium on Appl.
Computing (SAC’03), Melbourne, FL, 2003.
[6] S. Cost, and S. Salzberg, "A Weighted Nearest
Neighbor Algorithm for Learning with Symbolic
Features," Machine Learning, Vol. 10, 57-78, 1993.
[7] A. Perera, A. Denton, P. Kotala, W. Jackheck, W.
Valdivia Granda, and W. Perrizo, "P-tree Classification of
Yeast Gene Deletion Data," SIGKDD Expl., Dec. 2002.
[8] R. Kohavi, and G. John, "Wrappers for Feature Subset
Selection," Art. Intelligence, Vol. 1-2, pp. 273-324, 1997.
[9] K. Bennett, M. Momma, and M. Embrechts, "A
Boosting Algorithm for Heterogeneous Kernel Models,"
SIGKDD ’02, Edmonton, Canada, 2002.
[10] Q. Ding, W. Perrizo, and Q. Ding, “On Mining
Satellite and Other Remotely Sensed Images,” Workshop
on Data Mining and Knowledge Discovery (DMKD-
2001), Santa Barbara, CA, pp. 33-40, 2001.
[11] C. Shannon, "A Mathematical Theory of
Communication," Bell Systems Tech. Journ. l, Vol. 27,
pp. 379-423 and 623-656, July and October, 1948.
[12] M. Khan, Q. Ding, and W. Perrizo, "K-nearest
Neighbor Classification of Spatial Data Streams Using P-
trees," PAKDD-2002, Taipei, Taiwan, May 2002.
[13] W. Perrizo, W. Jockheck, A. Perera, D. Ren, W. Wu,
and Y. Zhang, "Multimedia Data Mining Using P-trees,"
Multimedia Data Mining Workshop, KDD’02, Edmonton,
Canada, Sept. 2002.
[14] W. Ledermann, "Handbook of Applicable
Mathematics," Vol. 6, Wiley, Chichester, 1980.
[15] L. Breiman, "Bagging Predictors," Machine
Learning, Vol. 24, No. 2, pp. 123-140, 1996.
[16] C.L. Blake, and C.J. Merz, "(UCI) Repository of
Machine Learning Databases," Irvine, CA, 1998.
http://www.ics.uci.edu/~mlearn/MLSummary.html,
[17] MIPS,"Comprehensive Yeast Genome Database,"
http://mips.gsf.de/genre/proj/yeast/index.jsp.

