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Abstract
Diverse types of data are associated with proteins, including net-
work and categorical data. While graph mining techniques have
long focused on data with no more than one label per node, gen-
eralizations have recently been developed. We show that existing
generalizations are not well suited to typical biological networks
and are likely to return few or no results on protein regulatory net-
works. They are, furthermore, ill-suited to graphs that are dense or
show the small world property, which are typical features of bio-
logical networks. A graph-relational edge disjoint instance mining
algorithm (GR-EDI) is presented that resolves these problems. Our
algorithm treats bipartite edges separately and only constrains uni-
partite edges to be disjoint. We introduce a new pattern constraint
that recovers the downward closure property. The algorithm uses
a search lattice traversal strategy that allows more effective mining
of graphs that cannot be considered as sparse due to hubs. Effec-
tiveness is demonstrated for a real biological example. While exist-
ing techniques return few or no patterns, GR-EDI is able to extract
many patterns.

1 Introduction
High-throughput experimentation is producing a wealth of
information related to proteins. Some data have graph char-
acteristics, such as regulatory networks [23], physical [13]
and genetic [24] protein-protein interaction networks, and
domain fusion networks [19]. Network patterns are impor-
tant at every level of the organization of a cell, and are stud-
ied extensively in systems biology [21]. Frequently occur-
ring network patterns, or network motifs, have been identi-
fied as important building blocks [20] of many networks.

Protein information is not limited to networks but also
includes functional and localization information, which is
maintained by the Gene Ontology Consortium [5], as well
as sequence information. Extending frequent pattern mining
to such diverse data can be expected to lead to even richer
network patterns. However, traditional graph-theory and
many frequent pattern mining algorithms [16, 29] focus on
graphs with no more than one label per node. Given the
rich information associated with proteins, the limitation to
a single node label is problematic.

In this paper, we consider protein networks in combina-
tion with sets of protein properties, or properties for short.
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An existing approach towards generalizing graph-theoretical
concepts to multi-labeled graphs is to consider the relation-
ship between each protein and each of its properties as a
bipartite graph. The bipartite graph is then combined with
the unipartite graph that characterizes the protein network
in question [17]. A benefit of this approach is that it is
straightforward and does not require many, if any, modifi-
cations to existing algorithms for single-labeled graphs. We
show that the approach of treating multiple labels as part of
a combined graph leads to a major problem: It might be ex-
pected that in the limiting case of a single property associ-
ation per node, the traditional single-label approaches and
the graph-relational generalization should lead to the same
results. However, for edge-disjoint graph mining algorithms
[17, 26] this is not the case.

Edge-disjoint instance (EDI) graph mining is an impor-
tant branch of frequent subgraph mining, in which the sup-
port of a pattern is based on instances that do not share
edges. This approach often produces more intuitive results
than simple frequent pattern mining, as is discussed in [17].
It has the additional benefit that support measures used in
EDI algorithms have the downward closure property that al-
lows pruning of the search lattice [26]. Algorithms that al-
low arbitrary overlap in pattern instances do not have these
properties. However, requiring edge disjointness for the bi-
partite graph that relates proteins with properties is problem-
atic in biological networks. Parallel or alternate pathways,
in which the same function of a protein contributes to mul-
tiple instances of the pattern are often of interest [18], and
the edge disjointness criterion, hence, has to be considered
as too strict. In fact, we show that expecting disjointness for
bipartite edges that connect proteins with properties is not
even in accordance with edge disjoint mining of single la-
bel graphs. If proteins were only allowed to have a single
property as label, and single label EDI mining was applied,
then the same protein with the same label could contribute to
multiple instances of the same pattern. This is because the
relationship between the protein and its label would not be
considered an ”edge” in the traditional single-label setting.

We introduce a graph-relational EDI algorithm (GR-



EDI) that recovers the results of traditional single-property
graph mining within the graph-relational setting by exclud-
ing bipartite edges from the disjointness condition. We are
able to maintain the downward closure property by defin-
ing a graph-relational pattern constraint. GR-EDI is shown
to produce more biologically useful results for a practical
bioinformatics problem compared to general EDI.

Existing EDI algorithms focus on sparse graphs. How-
ever, many biological networks are so dense, due to hubs,
that researchers have had to limit the maximum degree of
nodes by deleting nodes with a degree higher than a thresh-
old [17]. Such approaches have drawbacks, especially since
hubs are often of particular interest to biologists. Our algo-
rithm uses a special lattice traversal order that is more effec-
tive than existing ones at exhaustively returning all patterns
of a particular unipartite shape size. Results are not limited
in the number of properties in the pattern, even for limited
memory resources. This ordering of the search lattice traver-
sal is particularly suitable to biological networks, since such
networks often have the small-world property [27]. Patterns
are expected to relate entities that are close. Hence, the size
of the unipartite shape can safely be constrained to be smaller
than the diameter of the unipartite graph.

2 Related Work
Much work has been done on understanding the structural
properties of biological networks [20, 27]. Pattern min-
ing algorithms have been developed for mining biological
graphs, in particular graph transactions, using special pattern
types [28, 11, 15]. Some work has also been done on min-
ing network motifs within single input graphs [20, 14, 4].
NeMoFinder [4] stresses the importance of allowing overlap
between patterns in biological networks. The algorithm it-
self does not use measures that are downward closed since
the authors seek to find arbitrary overlap between all edges
of motif patterns.

Related approaches can also be found in the general
graph data mining literature. Data mining of graph trans-
actions addresses the problem of finding subgraphs in a set
of input graphs [29, 12, 16]. In this paper we address the
problem of mining graph patterns from a single input graph,
which is also discussed in [7, 25, 17]. Complexity is a more
important concern in pattern mining on single input graphs
because arbitrary overlap in pattern instances limits opportu-
nities for pruning [17].

Edge-disjoint instance (EDI) mining is one approach
towards pruning in the single input graph setting. Ku-
ramochi and Karypis developed the concept of frequent
edge-disjoint instances using the greedy-maximal indepen-
dent sets (GMIS) algorithm [17]. Their algorithms HSI-
GRAM and VSIGRAM traverse the frequent subgraph lat-
tice in a horizontal and vertical fashion respectively. This
extends research on EDI initiated by Vanetik et al. in [25].

Figure 1: Biological networks viewed with set-labeled nodes
(top left) are composed of a bipartite graph that includes
attribute nodes (B, top center) and a unipartite graph of
entities (U , top right). The single-labeled version (lower left)
can be viewed in the graph-relational setting (lower right)
where bipartite edges are not treated as true edges.

Vanetik et al. define conditions of admissible support mea-
sures on an overlap graph and give proofs in [26].

Few approaches have been developed that combine the
analysis of protein network structure and protein properties
[22, 3, 2]. None of these use the EDI concept. In the data
mining literature, multi-relational mining addresses general
questions that can include arbitrary relational data [6, 9].
These approaches are very general but they do not scale
to the large and dense biological networks of interest in
this paper. Kuramuchi et al. have also shown how graph
mining techniques can be adapted to address set-based data
associated with graph nodes [17]. Biological data is used as
one of their examples.

Our GR-EDI algorithm differs from previous EDI work
in two important aspects. In order to allow overlap of protein
function we make a distinction between unipartite and bipar-
tite relationships. We also introduce a more efficient search
lattice traversal that is better suited to the dense nature of
biological networks.

3 Preliminaries and Notation
We consider data characterized by two graphs: A unipartite
graph of entity nodes and a bipartite graph that relates entity
nodes and descriptor nodes. Entity nodes can, for example,
represent genes or proteins. Descriptor nodes may stand
for protein properties, such as functions. Without loss of



generality, entity-nodes are assumed to be unlabeled. Figure
1 illustrates the setting. The top left represents the biologist
perspective of objects, such as proteins, with their set of
properties. The top right shows how the same information
can be represented as a bipartite and a unipartite graph.
Conventional EDI approaches [17] combine both graphs into
one, single-labeled graph (bottom left). We, in contrast,
maintain a distinction between entity and descriptor nodes
(bottom right) and refer to it as the graph-relational setting.

Formally, for the conventional setting, let N =
{n1, . . . , nn} be a set of n “entity” nodes that have a struc-
tural (unipartite) relationship U ⊆ (N×N) between entities
see Figure 1 (top right). Also let D = {d1, ..., dm} be a set of
m descriptor (property) nodes. D represents the domain of
properties of proteins or other entities. The bipartite relation
B ⊆ (N×D) is represented in Figure 1 top center. The con-
ventional approach considers the graph Ggb(V,E, Lv) where
V = {N ∪ D}, E = {U ∪ B}. The set Lv denotes vertex
labels. Edges in general may have labels, but for simplic-
ity we assume that they are unlabeled. Each descriptor node
is considered to have a unique label and each entity node to
be unlabeled. In this single-labeled graph-based setting the
nodes in V and edges in E are not distinguishable as in the
lower left of Figure 1.

DEFINITION 3.1. A (subgraph) pattern P (V,E,Lv) is a
connected graph composed of any number of entity nodes,
descriptor nodes, and edges.

To denote a subgraph pattern, we designate numbered
vertices as entity nodes and lettered vertices as the labels of
descriptor nodes. For example, {(0, 1), (0, a)(1, b)} denotes
a subgraph of two nodes with one arc from one to the other
where the source is linked to descriptor with label ”a” and
the target is linked to descriptor with label ”b”. Note that
numbers in patterns do not correspond to node ids in the
database.

Gs is a subgraph of Ggr if and only if Vs ⊆ V and
Es ⊆ E. Two graphs G1 and G2 are isomorphic if there is
a bijection ρ : V1 → V2 where l(vi ∈ V1) = l(ρ(vi) ∈ V2)
such that (vi, vj) ∈ E1 ⇔ (ρ.vi, ρ.vj) ∈ E2 (there is
a bijection on edges that respects the vertex mapping and
vertex labels). The number of isomorphic embeddings of Gs

in Ggr is the number of distinct instances of Gs in Ggr. Two
occurrences of a connected graph Gs1 and Gs2 are distinct
when Gs1 .E 6= Gs2 .E. Connected graphs have a path
between any two vertices. Given a frequency threshold τ ,
a pattern or subgraph Gs is frequent in G if Supp(Gs) ≥ τ
where Supp(Gs) represents the frequency of the pattern in
the database.

3.1 Edge-disjoint (EDI) approaches In the single graph
setting the number of instances of a pattern does not have the
downward closure (anti-monotone) property [17, 8, 26] of

Figure 2: Overlap settings under a standard EDI algorithm
(first), under the GR-EDI definition that ignores bipartite
edges (second), and using a single-labeled graph with no
bipartite edges where EDI and GR-EDI are equal.

the famous Apriori algorithm in market basket research [1].
Methods that consider edge-disjoint instances of a pattern
solve this problem by redefining support. Vanetik et al.
describe the concept of EDI using instance (overlap) graphs
[26] and prove that the maximal independent set (MIS) over
the instance graph is an admissible support measure. An
overlap graph is based on all instances of pattern P within
an input graph G. Two instances of P , u and v that are
subgraphs of G are said to overlap or intersect if their edge-
sets overlap or u.E

⋂
v.E 6= ∅.

The overlap graph OP = (Ip, EI) is a graph that
represents the distinct instances of P found in Ggb as a set
of nodes IP . EI is the set of edges (u, v) that connect two
instances if and only if the two instances overlap. Figure
2 left illustrates the overlap graph of an example graph that
was constructed by combining a unipartite and a bipartite
graph in the conventional way. Only one instance would be
counted, since there is only one fully connected component
in the overlap graph. The example graph happens to only
have a single label per node, so we can also look at its
representation as a single-labeled graph (right). It can be
seen that the overlap graph in the right representation has no
connecting edges, i.e. three instances would be counted. The
center shows how the same example would be treated by our
graph-relational GR-EDI algorithm, which we discuss next.

4 GR-EDI Patterns and Overlap
The GR-EDI algorithm considers the data as the graph
formed by the union of the two edge types and node types
that preserves the identity of the source graphs. The graph
Ggr(V,E,Lv, Tv, Te) has a vertex (V ) set, an edge (E) set,



and labels (Lv) as in the general case. We simplify by
assuming unlabeled entity nodes and edges. A type label
Tv is introduced to distinguish entity nodes and descriptor
nodes. In our case, entity nodes are the unlabeled nodes
(denoted as different node shape in Figure 1, bottom right).
A type label Te is also given to edges to distinguish unipartite
and bipartite edges. In the following, we refer to vertices as
Ggr.N for entity nodes and Ggr.D for descriptor nodes, and
to unipartite edges as Ggr.U and bipartite as Ggr.B.

DEFINITION 4.1. The graph-relational pattern constraint al-
lows a pattern P if P ′ = P/(P.D, P.B) is a connected
graph. That is the pattern over unipartite edges and entity
nodes only is connected.

Figure 2 illustrates the difference between GR-EDI
overlap, standard EDI overlap, and single-labeled graph def-
initions. GR-EDI does not consider the pattern instances as
overlapping since bipartite edges are not considered in the
overlap calculation. Notice, how this approach reduces to
the single-label overlap graph when entities have only one
label and the graph is treated as a single-labeled graph. In the
standard graph mining setting, any connected subgraph can
be a pattern. We introduce a constraint into graph-relational
pattern mining that only allows patterns, in which the entity
nodes are connected through unipartite edges alone. Figure 3
shows the general pattern lattice where dotted boxes indicate
patterns that fail the constraint. The GR-EDI patterns meet
the constraint by connecting two entity nodes.

DEFINITION 4.2. A graph-relational overlap graph
OP (IP , EP ) is defined where two pattern instances
u, v ∈ IP form the edge (u, v) ∈ EP if and only if their
unipartite edges overlap (u.U

⋂
v.U 6= ∅ ⇔ (u, v) ∈ EP ).

4.1 GR Downward Closure The downward closure prop-
erty of the EDI algorithms [25, 17] is maintained by finding
the MIS of the standard overlap graph. MIS applied to the
GR-EDI overlap graph also maintains the downward closure
property. Vanetik et al. identified that in order to be admis-
sible a support measure based on the overlap graph must be
non-decreasing under the operations of clique contraction,
(connected) node addition, and edge removal (see [26] for
full definitions and proof). Connected node addition means
that a node is added and linked to all other nodes in the graph.
These operations are required to transform the overlap graph
of a pattern to the overlap graph of a sub-pattern. Therefore,
to maintain downward closure the operations must be non-
decreasing so that the support of the sub-pattern is at least as
large as the support of the pattern. We follow the same rea-
soning with GR-EDI by showing that none of the required
operations on the GR-EDI overlap graph result in increasing
support.

In GR-EDI, the overlap graph changes when the under-
lying pattern is modified by either adding a unipartite or bi-

partite edge. Unipartite edge addition is similar to the orig-
inal single-label graph changes. It results in the following
potential changes for any instance in the overlap graph:

1. Instance has no valid edge for addition

2. Instances merge by sharing the added edge

3. Instance branches due to multiple edge addition

The existing overlap graph changes by node deletion, edge
addition, or clique expansion for the cases. These changes
correspond to the three operations required to move from
pattern to sub-pattern overlap graphs. Bipartite edges make
the following connections:

1. Existing entity node to an existing descriptor node

2. Existing entity node to an new descriptor node

3. New entity node to an existing descriptor node

In the first two cases, the corresponding instance either re-
mains a node in the overlap graph or it is removed accord-
ing to whether it is able to add the edge or not. The third
case causes MIS to fail downward closure if no unipartite
edges are present in the pattern. The original instance node
can branch into multiple independent instance nodes when
the bipartite edge is added to the new entity node. For ex-
ample, a simple pattern of (0,b) contains one bipartite edge
and zero unipartite edges. If this pattern was to be extended
by adding another bipartite edge to form (0,b)(1,b) then in-
stances of this pattern would never overlap by the GR-EDI
definition. The new overlap graph would add disconnected
nodes to the existing one see Figure 3. In GR-EDI entity
nodes in patterns are constrained to be connected through
unipartite edges, thereby avoiding this problem. Note also
that the initial pattern (0,b) is not valid in GR-EDI; we must
start with the unipartite pattern shape (0,1).

5 GR-EDI Algorithm
The GR-EDI algorithm can be viewed as a hybrid based on
the HSIGRAM algorithm presented in [17]. We explore the
lattice of the unipartite graph in a horizontal fashion that is
analogous to the HSIGRAM algorithm. Bipartite edges are
added apriori-like at each shape, thereby moving vertically
as opposed to a pure horizontal approach. The motivation
for this hybrid approach is that patterns that are small in
their unipartite connectivity can be explored with a relatively
small memory cost. For dense graphs, patterns with few uni-
partite edges can be returned exhaustively even if solving
the full problem exceeds memory requirements. Two fur-
ther changes were made with respect to the original EDI-
type algorithm. First, bipartite edges are not considered in
constructing the overlap graph. Second, the graph-relational



Figure 3: Example of a pattern lattice. Solid boxes are valid
GR-EDI patterns. Solid lines indicate downward closure.
Overlap graphs are shown for the sample database, notice
that general patterns may not hold to downward closure.

constraint on patterns is enforced, which states that all en-
tities are required to be connected through unipartite edges
alone.

GR-EDI initializes with the frequent 1,* and 2,*-
patterns (all patterns with one and two unipartite edges) since
the main loop joins frequent k,0-patterns (unlabeled unipar-
tite shapes) based on common (k-1),0 core patterns, see [17]
for details on candidate pruning. This results in patterns
that meet the GR-EDI constraint since no bipartite edges are
added yet. If the instances are above the support threshold,
then the EDI property is tested. The greedy MIS algorithm
is applied as in [10, 17]. Finally, once a unipartite shape is
identified as frequent, all bipartite extensions are discovered
in an apriori-like algorithm. This algorithm works almost ex-
actly like the outer-loop process but candidates are only al-
lowed to add bipartite edges to maintain the GR-EDI pattern
constraint. Downward closure is tested against the GR-EDI
lattice.

MIS is computed over the overlap graph for each bipar-
tite enhanced pattern. This step uses the GR-EDI definition
of overlap compared to the single-label version that would
have considered all edges in the overlap. The memory cost
of each pattern search at this stage is no more that the cost
from the previous main loop search for the unlabeled pattern

Figure 4: Frequent patterns in E.coli network.

as the intermediate calculations based on the overlap graph
will always be smaller than the parent pattern.

6 Experiments and Discussion
We apply GR-EDI to a real E.coli data set, in which the uni-
partite entity relationship represents gene regulatory interac-
tions. The bipartite relationship describes gene and protein
properties such as domain annotations. There are a total of
3,241 directed edges between 1,362 nodes, and 2,841 de-
scriptors that form 6,674 bipartite edges with the nodes. The
data are described in detail in [2]. We first compare GR-EDI
algorithm and the EDI algorithm based on the patterns that
each approach is able to produce. We see a significant dif-
ference in the number of patterns recognized for each tech-
nique, see Figure 4. Notice that at the initial support set-
ting, EDI was unable to produce any results. As support is
lowered, EDI finds some patterns but GR-EDI continues to
return substantially more patterns.

The large difference is primarily due to hub genes that
are linked to a large number of other genes. In other words,
the general EDI approach only allows proteins to contribute
the same function to one disjoint regulatory ”pathway” while
GR-EDI allows each protein to contribute to as many disjoint
pathways that exist in the network. This property of GR-EDI
is especially important when the biological network has a
structure centered on a smaller number of originating nodes
such as regulators. In the regulatory network there are only
few regulators (143 for our network), but some connect to
hundreds of targets. For each regulator EDI counts no more
than one instance of regulation, whereas GR-EDI considers
all. GR-EDI can find patterns that involve only one regulator,
such as (0).(hmm.flhD), (1).(hmm.abc tran) from Table 1.
EDI as discussed in [17] would have given a support of one
in this case instead of seven for up-regulation (+) and nine
for down-regulation (-), and no frequent pattern would have



Figure 5: Memory usage for standard Graph-based and GR-
EDI hybrid showing the impact of search order on memory.

been returned.
These types of graph-relational patterns are of interest

to biologists studying global regulators. The pattern shown
above suggests that regulators with the flhD domain fre-
quently regulate proteins with the ABC transporter function.
Such observations may guide further experiments and may
help in interpreting the role of regulators in the context of the
functioning of the cell. The biological significance of related
patterns is discussed in detail in [2]. Reasons for allowing
certain types of overlaps in other biological networks have
also been given in the context of network motifs [20, 14, 4].

Figure 6 shows a subgraph of the E.coli network and
illustrates patterns that our algorithm can discover. Exam-
ples of patterns that are detected are listed in Table 1 to-
gether with their support in the full network. Note that all of
these cases show some level of overlap in the protein prop-
erties, but not in the instances of the regulatory connections;
therefore the patterns are only found using the GR-EDI min-
ing approach. The patterns demonstrate frequently occurring
”modules” or ”pathways” that are disjoint in regulatory con-
nectivity. These patterns can be used to relate specific pro-
teins (through their properties) to the global network or to
relate global properties to specific locations in the network.

The other major challenge with this type of biological
network is the denseness, i.e. presence of hubs that are
highly connected. Figure 5 shows the improvement in mem-
ory usage for a small sample database based on the E.coli
set. This random subset was chosen so that both algorithms
could complete under reasonable time and memory con-
straints. For perspective consider that under the full graph
the largest 1-unipartite edge pattern under GR-EDI had 10
descriptors requiring the EDI algorithm to wait until 11-edge
patterns. The largest unipartite shape discovered using our

Figure 6: Subgraph from the E.coli regulatory network.
Patterns related to regulator flhDC and ACB transporter
targets were discovered.

Table 1: Example patterns from the E.coli network.
Pattern + sup., - sup.
(0).(hmm.flhD), (1).(hmm.abc tran) 7, 9
(0).(hmm.flhD), 5, -
(1).(hmm.response reg)
(0).(hmm.gere), (1).(hmm.abc tran) 21, 20
(0).(hmm.response reg), 7, -
(1).(hmm.abc tran)
(0).(hmm.response reg), 6, 6
(0).(hmm.gere), (1).(hmm.abc tran)

prototype and memory constraints was size 4. For the sam-
ple the largest EDI pattern has 6-edges total and the largest
unipartite shape is 4-edges.

It can be seen that although the memory requirements
for finding all patterns are the same, GR-EDI returns the
results of patterns related to small unipartite shapes with
much lower memory requirements than EDI. The order in
which GR-EDI visits patterns is such that the inner apriori
loop to find results in the same unipartite shape is performed
first. EDI, in contrast, visits complex unipartite patterns as
it gathers itemset-like patterns for small unipartite shapes.
The hybrid search order of GR-EDI has important conse-
quences. Memory usage is minimized for each unipartite
shape. That means that once resources are exhausted, re-
sults for all smaller shapes are complete. Figure 5 shows
that this becomes increasingly important when considering
regulatory patterns of more than two proteins.

Having uniform information available at each frequent
shape level is very important since patterns that involve a
small number of unipartite edges are expected to be much
more relevant in biological networks than patterns that ex-
tend over many edges. Given the small-world nature of most
biological networks, most proteins can be reached by travers-



ing only a few edges. Patterns that are large according to the
number of properties, on the other hand, are of great interest
since frequent combinations of properties provide additional
information for further analysis.

7 Conclusion
In this paper, we present an algorithm for mining frequent
patterns in protein networks, in which proteins are associ-
ated with multiple properties. The algorithm extends EDI
graph mining to multi-labeled settings. We demonstrate that
our approach solves several problems associated with the ap-
plication of existing algorithms to biological networks. The
modifications we make with respect to existing approaches
are, furthermore, motivated by comparison with traditional
single-label approaches. Pattern constraints are introduced
to maintain downward closure for support. Our algorithm
explores the search space using a hybrid approach that hori-
zontally examines shapes then vertically extends the shapes
by adding properties in an apriori fashion. We show that this
hybrid approach is particularly suited given the small-world
nature of many biological networks. We demonstrate that our
algorithm produces meaningful patterns in a real-world ex-
ample of an E.coli transcriptional regulatory network, where
conventional EDI produces few or no results.
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